Explanation:
At 365 K temperature sulfur tetrafluoride have a density of 0.260 g/L at 0.0721 atm.
What is an ideal gas equation?
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide
the given mass by the number of moles to get molar mass.
Given data:
P= 0.0721 atm
n=\frac{mass}{molar \;mass}n=
molarmass
mass
R= 0.082057338 \;L \;atm \;K^{-1}mol^{-1}R=0.082057338LatmK
−1
mol
−1
T=?
Putting value in the given equation:
\frac{PV}{RT}=n
RT
PV
=n
density = \frac{2 \;atm\; X molar\; mass}{0.082057338 \;L \;atm \;K^{-1}mol^{-1} X T}density=
0.082057338LatmK
−1
mol
−1
XT
2atmXmolarmass
0.260 g/L = \frac{0.0721 \;atm\; X 108.07 g/mol}{0.082057338 \;L \;atm \;K^{-1}mol^{-1} X T}0.260g/L=
0.082057338LatmK
−1
mol
−1
XT
0.0721atmX108.07g/mol
T = 365.2158727 K= 365 K
Hence , at 365 K temperature sulfur tetrafluoride have a density of 0.260 g/L at 0.0721 atm.
Answer
Solids.
Solids will always have a definite shape no matter the shape or size of an container.
The train cars moves in the same direction when the engine car begins
moving to the left.
<h3>What is Law of magnetism?</h3>
The law of magnetism states that like poles repel and unlike poles attract.
In substances which have magnetic field, they are known to attract each
other.
The engine and train car are highly magnetized which results in them
moving in the same direction when they are in close contact with one
another.
Read more about Magnetism here brainly.com/question/12529206
A rising tide is also known as an occurrence between low tide to high tide.