Answer:
See explanation
Explanation:
The ionic radius of metal M decreases as the charge on the metal M increases. The ionic radius is generally defined as the distance between the nucleus and the outermost electron of the ion. Hence, ionic radius becomes much lesser as the magnitude of the positive charge increases.
It is obvious from the various formulae of metal chlorides in the question that the metal forms cations M^2+, M^3+ and M^4+ respectively. The order of decreasing ionic radius of the compounds is;
MX2 > MX3 > MX4
Answer:
Molar mass = 94972.745 g/mol
Explanation:
Given data:
Density = 2.25 g/ml
Pressure = 700 mmHg
Temperature = 200°C
Molar mass = ?
Solution:
Density = 2.25 g/ml (2.25×1000 = 2250 g/L)
Pressure = 700 mmHg (700/760 = 0.92 atm)
Temperature = 200°C (200+273 = 473K)
Formula:
d = PM/RT
M = dRT/P
M = 2250 g/L × 0.0821 atm.L /mol.K × 473K / 0.92 atm
M = 87374.93 g/mol / 0.92
M = 94972.745 g/mol
The structure of Methanol (CH₃OH) is shown below. This structure contains
2 lone pair of electrons on oxygen (highlighted red). Electronic configuration of oxygen is,
Oxygen = 8 = 1s², 2s², 2px², 2py¹, 2pz¹
There are six electrons in valence shell of oxygen, among these six electrons two electrons are unpaired and involved in forming covalent bond with hydrogen and carbon, while remaining 4 electrons in pair (i.e. 2s², 2px²) exists as lone pairs.
The correct answer is C: Calcium carbonate in water is a solution