Answer:
5.0 moles of water per one mole of anhydrate
Explanation:
To solve this question we must find the moles of the anhydrate. The difference in mass between the dry and the anhydrate gives the mass of water. Thus, we can find the moles of water and the moles of water per mole of anhydrate:
<em>Moles Anhydrate:</em>
7.58g * (1mol / 84.32g) = 0.0899 moles XCO3
<em>Moles water:</em>
15.67g - 7.58g = 8.09g * (1mol / 18.01g) = 0.449 moles H2O
Moles of water per mole of anhydrate:
0.449 moles H2O / 0.0899 moles XCO3 =
5.0 moles of water per one mole of anhydrate
You have to balance out those forces and apply the same amount of equal and opposite force to it. I hope I helped ^^
The first one is right and so is eight you have to add them together to see if they go together if they dont add what is missing
Explanation:
Formula to calculate standard electrode potential is as follows.

= 0.535 - 1.065
= - 0.53 V
Also, it is known that relation between
and K is as follows.

ln K =
Substituting the given values into the above formula as follows.
ln K =
=
ln K = -41.28
K =
= 
Thus, we can conclude that the value of the equilibrium constant for the given reaction is
.
Answer:
1 litre = 1000 millilitres