respiratory and lymphatic
Answer:
0.000000540
Explanation:
Step 1: Make an ICE chart for the solution of AgBr
"S" represents the molar solubility of AgBr
AgBr(s) ⇄ Ag⁺(aq) + Br⁻(aq)
I 0 0
C +S +S
E S S
Step 2: Write the expression for the solubility product constant (Ksp)
Ksp = [Ag⁺] [Br⁻] = S × S
Ksp = S² = (0.0007350)² = 0.000000540
A is obviously out because it leads to a volume of 125.0 milliliters of the new solution and gives you a lower concentration than you were aiming for.
D is out because you are adding 75 milliliters of the stock solution, so your concentration would be too high. You only need 25.0 milometers of stock solution per 100 milliliters of the new solution.
C is also out because it leads to 50.0 milliliters stock solution per 100 milliliters of the new solution and hence the wrong concentration.
B is by default the correct answer. It also details the correct technique. First you add the stock solution (This you know from your calculations to be 25 milliliters.) then you add the water up to the volume you needed. (Because the calculations only tell you the total volume of water not what you need to add) You also add the water last so you can rinse the neck of the flask to make sure you also get all the stock solution residue into the stock solution.
I would add the final step of stirring, but B is the only answer that can be correct.
Answer:
gwbwhsusjhsbdsbdiddushsbdbdjsisshbwwiwjwbssidhdbdhdjdidjdbsbd
Pressure of the gas inside the container is 662.59 torr.
<h3>What is ideal gas law?</h3>
The ideal gas law (PV = nRT) connects the macroscopic characteristics of ideal gases. An ideal gas is one in which the particles are both non-repellent and non-attractive to one another (have no volume).
The general law of ideal gas can be applied here: PV is equal to nRT, where P is the gas pressure in atm.
V is the number of moles of the gas in a mole, and n is the volume of the gas in L. R is the universal gas constant. T is the temperature(Kelvin) of the gas.
If P and T are different values and n and V are constants, then
(P₁T₂) = (P₂T₁).
P₁ = 735 torr, T₁ = 29°C + 273 = 302 K,
P₂ = ??? torr, T₂ = 62°C + 273 = 335 K.
∴ P₂ = (P₁T₂)/(P₁) = (735 torr)(302 K)/(335 K) = 662.59 torr.
To know more about ideal gas law visit:
brainly.com/question/29405260
#SPJ1