Answer:
each resistor is 540 Ω
Explanation:
Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance
defined by the formula:

Therefore, R/3 is the equivalent resistance of the initial circuit.
In the second circuit, two of the resistors are in parallel, so they are equivalent to:

and when this is combined with the third resistor in series, the equivalent resistance (
) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

The problem states that the difference between the equivalent resistances in both circuits is given by:

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

Thank you for posting your question here at brainly. Below is the solution. I hope the answer will help.
<span>Cl^- 1s^2 2s^2p^6 3s^2 3p^6 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 17- 10 =7 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6; 1s^2 2s^2p^6 S = 10; 3s^2 3p^6 S = 0 </span>
<span>Zeff = Z-S = 19- 10 = 9
</span>
S = 2 + 6.8 + 2.45 = 11.25
<span>Zeff(Cl^-) = 17 – 11.25 = 5.75 </span>
<span>K^+ 1s^2 2s^2p^6 3s^2 3p^6 same S as for Cl^- but Z increases by 2 hence </span>
<span>Zeff(K^+) = 19 - 11.25 = 7.75</span>
Answer:
Δ v = 125 m/s
Explanation:
given,
mass of space craft = 435 Kg
thrust = 0.09 N
time = 1 week
= 7 x 24 x 60 x 60 s
change in speed of craft = ?
Assuming no external force is exerted on the space craft
now,



a = 2.068 x 10⁻⁴ m/s²
using equation of motion
Δ v = a t
Δ v = 2.068 x 10⁻⁴ x 7 x 24 x 60 x 60
Δ v = 125 m/s
Answer:
The potential difference is the drop in voltage that occurs across a resistor as current flows through it in a circuit, potential difference or voltage(V) = current (I) *resistance (R), or to abbrevate V = I*R. In this case, I = 5amps and R = 10 ohms, so V = 5 * 10 = 50volts
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.