Ox:vₓ=v₀
x=v₀t
Oy:y=h-gt²/2
|vy|=gt
tgα=|vy|/vₓ=gt/v₀=>t=v₀tgα/g
y=0=>h=gt²/2=v₀²tg²α/2g=>tgα=√(2gh/v₀²)=√(2*10*20/24²)=√(400/576)=0.83=>α=tg⁻¹0.83=39°
cosα=vₓ/v=v₀/v=>v=v₀/cosα=24/cos39°=24/0,77=31.16 m/s
Ec=mv²/2=2*31.16²/2=971.47 J=>Ec≈0.97 kJ
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
Both the size and the shape of the tree changes
Answer:
1) The greatest height attained by the ball equals 20.387 meters.
2) The time it takes for the ball to reach 15 meters approximately equals 1 second.
Explanation:
The greatest height will be attained when the ball stop's in the air and starts falling back to the earth.
thus using third equation of kinematics we obtain the height attained as

where
'v' is the final speed of the ball
'u' is the initial speed of the ball
'a' is the acceleration that the ball is under which in this case equals 9.81 
's' is the distance it covers
Thus for maximum height applying the values in the equation we get

Using the same equation we can find the speed of the ball when it reaches 15 meters of height as

the time it takes to reduce the velocity to this value can be found by first equation of kinematics as

Answer:
If the voltage is increased then the electric field is higher, and electron velocity (average) is proportional to this field. Then you have an increase in speed. And current is total charge passing per time unit, so current is proportional to velocity value of charge (and to voltage in resistors and wire).
Explanation: