Answer:
1) HNO3/H2SO4, 2) CH3CH2CH2Cl/AlCl3
Explanation:
Benzene is a stable aromatic compound hence it undergoes substitution rather than addition reaction.
When benzene undergoes substitution reaction, the substituent introduced into the ring determines the position of the incoming electrophile.
If I want to synthesize m-nitropropylbenzene, I will first carry out the nitration of benzene using HNO3/H2SO4 since the -nitro group is a meta director. This is now followed by Friedel Craft's alkykation using CH3CH2CH2Cl/AlCl3.
Answer:
Iron(III) oxide and its common name is Ferric Oxide
Explanation:
water <span>t because washing with sulfuric acid wouldn't actually get any
of the acid off of you, same with oil, just soothe it momentarily and
stop burning of the skin by creating a barrier to the acid. If you wash
with soap
it will burn even more by activating some enzymes in the acid (depending
on kind of acid) so washing with water is most practical because it
gets all of the acid off immediately to stop more burns from occurring. I
would recommend washing with water and then pouring oil onto the burn,
to create a barrier. </span>
Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing
