Decrease the temperature of the oxygen because if coal goes air born it can explode and wipe out power plants like they were not there
Answer:
No, IR should not soely be used to identify molecules
Explanation:
IR is a method that identifies the functional groups in a molecule by deducing the frequency of stretching and vibration of bonds. Each peculiar type of bond has a frequency for the vibration of each bond represented on the IR spectrum.
However, one method is never enough to identify a compound. A combination of methods must always be used to clear up ambiguities arising from overlapping IR frequencies. Also, interpretation of the nuanced peaks of the fingerprint region in IR spectra is quite challenging and only gives a fair idea of the functional groups present in the compound.
Therefore other methods such as NMR, UV-VISIBLE etc should also be involved in the identification of compounds.
Answer: The vapor pressure of water at 10°C will be less as compared with its vapor pressure at 50°C.
Explanation:
Vapor pressure of a liquid is defined as the pressure exerted by the vapors in equilibrium with the liquid/solution at a particular temperature.
As Kinetic energy is dependent on the absolute temperature of the gas.

where R = gas constant
T = temperature
On increase in temperature, the kinetic energy of the molecules increase and thus more liquid molecules can escape to form vapours and thus will exert more vapor pressure.
Thus the vapor pressure of water at 10°C will be less as compared with its vapor pressure at 50°C.
Answer:
It is higher in Norfolk because of the warm ocean currents from the south
Explanation:
Can I have brainliest answer please?
Answer:
By decreasing the volume, the equilibrium will shift to the side with the smallest amount of particles
Explanation:
Step 1: Data given
The principle of Le Chatelier says:
When the volume is decreased, the equilibrium will shift to the side of the smallest number of particles.
2NOBr(g) ⇌ 2NO(g)+Br2(g)
In the following example, we have 2 moles of NOBr (on the left side) and 3 moles of gas on the right side. This means the left side, the reactant side, has the smallest number of particles.
The equilibrium will here shift to the left side, the side of NOBr.
In the following example
2NO2(g) ⇌ N2O4(g)
We have 2moles of NO2 on the left side and 1 mol of N2O4 on the right side.
By decreasing the volume, the equilibrium will shift to the side of the smallest number of moles. Here this is the right side, the side of N2O4.