Carbon is not very reactive at room temperature
Hydrogen peroxide is one of the most common bleaching agents. It is the primary bleaching agent in the textile industry, and is also used in pulp, paper, and home laundry applications.
bleaching agent is a material that lightens or whitens a substrate through chemical reaction. The bleaching reactions usually involve oxidative or reductive processes that degrade color systems. These processes may involve the destruction or modification of chromophoric groups in the substrate as well as the degradation of color bodies into smaller, more soluble units that are more easily removed in the bleaching process. The most common bleaching agents generally fall into two categories: chlorine and its related compounds (such as sodium hypochlorite) and the peroxygen bleaching agents, such as hydrogen peroxide and sodium perborate. Reducing bleaches represent another category. Enzymes are a new category of bleaching agents. They are used for textile, paper, and pulp bleaching as well as for home laundering. Chlorine‐containing bleaching agents are the most cost‐effective bleaching agents known. They are also effective disinfectants, and water disinfection is often the largest use of many chlorine‐containing bleaching agents. They may be divided into four classes: chlorine, hypochlorites, N‐chloro compounds, and chlorine dioxide. Except to bleach wood pulp and flour, chlorine itself is rarely used as a bleaching agent. The principal form of hypochlorite produced is sodium hypochlorite. Other hypochlorites include calcium hypochlorite and bleach liquor, bleaching powder and tropical bleach. The principal solid chlorine bleaching agents are the chlorinated isocyanurates, eg, sodium dichloroisocyanurate dihydrate. Other N‐chloro compounds include halogenated hydantoins, and sodium N‐chlorobenzenesulfonamide (chloramine B). Chlorine dioxide is a gas that is more hazardous than chlorine. Large amounts for pulp bleaching are made by several processes in which sodium chlorate is reduced with chloride, methanol, or sulfur dioxide in highly acidic solutions by complex reactions. Hydrogen peroxide is one of the most common bleaching agents. It is the primary bleaching agent in the textile industry, and is also used in pulp, paper, and home laundry applications. Hydrogen peroxide reacts with many compounds, such as borates, carbonates, pyrophosphates, sulfates, etc, to give peroxy compounds or peroxyhydrates. Peracids have superior cold water bleaching capability versus hydrogen peroxide because of the greater electrophilicity of the peracid peroxygen moiety. Lower wash temperatures and phosphate reductions or bans in detergent systems account for the recent utilization and vast literature of peracids in textile bleaching. The reducing agents generally used in bleaching include sulfur dioxide, sulfurous acid, bisulfites, sulfites, hydrosulfite (dithionites), sodium sulfoxylate formaldehyde, and sodium borohydride. These materials are used mainly in pulp and textile bleaching.
Answer:
In the presence of salt water and oxygen the coating will not corrode. As long as zinc coating is present and remains intact corrosion is not possible.
Explanation:
Here it is given that a tin is present so firstly tin is made of a chemical element
which belongs to carbon family in periodic table of group 14.
It is a silvery,soft, white metal with a bluish tinge.
Now the covering which is been done on the tin is Zinc.
so, zinc is known to be served as a sacrificial coater.
Their is an amazing reason behind zinc coating being so effective and intact i.e. Its own corrosive properties are such that it stops corrosion.
Their is a process which is known as a galvanic corrosion which refers to that "ZINC" defers to the metal to which it is protecting.
It is even more electrochemically active than iron itself.
Here, it is mentioned that zinc coating gets chipped but the coating remains intact. So, if the zinc is not removed from the tin's surface it will not get corroded when it is exposed to salt water and oxygen.
Molecular mass of nitrogen, N2 = 2*14 = 28
molecular mass of hydrogen, H2=2*1 = 2
Molecules of both elements contain 2 atoms, so the ratio of molecules is the same as the ratio of atoms.
From the molecular masses above,
ratio of number of molecules = ratio of molecular masses, therefore
7g N2 : x g H2 = 28:2
cross multiply:
x=7*2/28=0.5 g of Hydrogen has the same number of atoms as 7 g of nitrogen (at room temperatures)
Answer:
Please make it full I'm not seeing it