<span>The distance between two objects is increased by three times the oringinal distance. Since they were already separated by one time the original distance,
the additional three times the oringinal distance now puts them four times the original distance apart.
Whether we're talking about the gravitational forces of attraction or
the electrical forces of attraction, either one is inversely proportional
to the square of the distance between the objects.
So changing the distance to four times the original distance causes
the forces to become 1/4</span>² as strong as they were originally.
The forces become 1/16 of their original magnitude.<span>
</span>
Answer: The effect of Bessemer process is its reduction in cost for steel production.
Explanation:
In the manufacturing of steel, Bessemer process was the first method discovered for mass production of steel. This was discovered by Sir Henry Bessemer and Williams Kelly both from United States. This method aids in the removal of impurities from iron and converts it to steel in few minutes (this usually takes a full day to achieve). The economy of the country improved as steel was made faster and cheaper causing companies to build thousands of new railroads.
Answer:
Approximately
.
Assumption: air resistance on the rocket is negligible. Take
.
Explanation:
By Newton's Second Law of Motion, the acceleration of the rocket is proportional to the net force on it.
.
Note that in this case, the uppercase letter
in the units stands for "mega-", which is the same as
times the unit that follows. For example,
, while
.
Convert the mass of the rocket and the thrust of its engines to SI standard units:
- The standard unit for mass is kilograms:
. - The standard for forces (including thrust) is Newtons:
.
At launch, the velocity of the rocket would be pretty low. Hence, compared to thrust and weight, the air resistance on the rocket would be pretty negligible. The two main forces that contribute to the net force of the rocket would be:
- Thrust (which is supposed to go upwards), and
- Weight (downwards due to gravity.)
The thrust on the rocket is already known to be
. Since the rocket is quite close to the ground, the gravitational acceleration on it should be approximately
. Hence, the weight on the rocket would be approximately
.
The magnitude of the net force on the rocket would be
.
Apply the formula
to find the net force on the rocket. To make sure that the output (acceleration) is in SI units (meters-per-second,) make sure that the inputs (net force and mass) are also in SI units (Newtons for net force and kilograms for mass.)
.