Answer:
2a) x = 32 [mil/h]; 2b) t = 0.5[h]; 3a) t = 2.5 [h]; 3b) x = 185[mil]
Explanation:
2a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 32 [\frac{mil}{h}] \\t=time = 1 [h]\\x=v*t\\x=32[\frac{mil}{h} ]*1[h]\\x=32[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2032%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%201%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D32%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A1%5Bh%5D%5C%5Cx%3D32%5Bmil%7D)
2b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{420}{840}\\ t=0.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B420%7D%7B840%7D%5C%5C%20t%3D0.5%5Bh%5D)
3a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{35}{14}\\ t=2.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B35%7D%7B14%7D%5C%5C%20t%3D2.5%5Bh%5D)
3b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 74 [\frac{mil}{h}] \\t=time = 2.5 [h]\\x=v*t\\x=74[\frac{mil}{h} ]*2.5[h]\\x=185[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2074%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%202.5%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D74%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A2.5%5Bh%5D%5C%5Cx%3D185%5Bmil%7D)
Water enters the atmosphere through evaporation, transpiration, excretion and sublimation: Transpiration is the loss of water from plant
Hope this helped you! :D
First we find the energy level with the following formula, where a is the energy level, n1 is the final energy level, n2 is the starting energy level and r is Rydberg's constant in Joules

We insert the values


The wavelength is found with this formula, where h is Planck's constant and c is the speed of light

Finally we insert the values

Which is the same as 93.8 nm
Answer:
its true that Scientific endeavor is driven by both simple curiosity as well as societal demands.
Explanation:
When a scientist has a curiosity about something he carried out a research. and when their is a demand of something in society that time scientific research is carried out. Therefore its true that a scientific endeavor is driven by simple curiosity or societal demand.
For example
in society, there is demand of a medicine which can completely kill the cancer and a scientist has curiosity to know how to kill cancer cell. In this way a scientific endeavor for cancer medicine can be carried out by both simple curiosity as well as societal demands.
Answer:
50 lb
Explanation:
Given,
The weight of astronaut's life support backpack on Earth (w) = 300 lb
Acceleration due to gravity on Earth (g) = 9.8 m/s²
Acceleration due to gravity on Moon = g'

We know that weight of an object on Earth is,


Similarly, weight on Moon will be




Thus the astronaut's life support backpack will weigh 50 lb on Moon.