1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bija089 [108]
3 years ago
5

A transverse sinusoidal wave on a string has a period T = 25.0 ms and travels in the negative x direction with a speed of 30.0 m

/s. At t = 0, an element of the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 2.00 m/s.
(a) What is the amplitude of the wave?
(b) What is the initial phase angle?
(c) What is the maximum transverse speed of an element of the string?
(d) Write the wave equation for the wave.
Physics
1 answer:
lesya [120]3 years ago
7 0

Answer:

a) A =0.021525m

b) \phi=0.37869rad

c) v_{max}=5.4098\frac{m}{s}

d)y(x,t)=(0.021525m)cos(\frac{8\pi}{3}x+80\pi t+0.37869)

Explanation:

1) Notation

A= Amplitude

v= velocity

\lambda= wavelength

k= wave number

\omega= angular frequency

f= frequency

2) Part a and b

The equation of movement for a transverse sinusoidal wave is gyben by (1)

y(t)=Acos(kx+ \omega t +\phi)   (1)

At x=0 ,t=0 we have that:

0.02=Acos(\phi)

The velocity would be the derivate of the position, so taking the derivate of (1) respect to t we got (2)

v(t)=-\omega Asin(kx+ \omega t+\phi)   (2)

And replacing the conditions at x=0, t=0 we got

-2\frac{m}{s}=-\omega Asin(\phi)  

Now we can find the angular frequency with equation (3)

\omega =\frac{2\pi}{T}   (3)

Replacing the values obtained we got:

\omega =\frac{2\pi}{0.025s}=80\pi \frac{rad}{s}  

From equation (1) we have:

Acos(\phi)=0.02   (a)

-2=-80\pi Asin(\phi)   (b)

So from condition (b) we have:

Asin(\phi)=\frac{1}{40\pi}   (c)

If we divide condition (c) by condition (a) we got:

\frac{Asin(\phi)}{Acos(\phi)}=tan(\phi)=\frac{1}{0.02x40\pi}=\frac{1}{0.8\pi}=0.39789

If we solve for \phi we got:

\phi =tan^{-1}(0.39789)=0.37869

And now since we have \phi we can find A from equation (a)

Acos(0.37869)=0.02

So then Solving for A we got A=\frac{0.02}{cos(0.37869)}=0.021525

3) Part c

From equation (2) we can see that the maximum speed occurs when sin(\omega t+\phi)=1, so on this case we have:

v_{max}=\omega A=80\pi \frac{rad}{s}x0.021525m=5.4098\frac{m}{s}

4) Part d

On this case we need an equation like (1), and we have everything except the wave number, and we can obtain this from the following expression:

v=\lambda f=\frac{2\pi}{k}\frac{\omega}{2\pi}=\frac{\omega}{k}   (4)

And solving for k from equation (4) we got

k=\frac{\omega}{v}=\frac{80\pi \frac{rad}{s}}{30\frac{m}{s}}=\frac{8\pi}{3}m^{-1}}

And with the k number we have everythin in order to create the wave function, given by:

y(x,t)=(0.021525m)cos(\frac{8\pi}{3}x+80\pi t+0.37869)

You might be interested in
Tarzan and Jane. Because of your concern that incorrect science is being taught to children when they watch cartoons on TV, you
creativ13 [48]

Answer:

The maximum height Tarzan and Jane can swing as a fraction of her initial heigh is ⅓h

Explanation:

Let

m = Mass of Tarzan

M = Mass of Jane

Given

M = 2m

To calculate the maximum height Tarzan and Jane can swing, we make use of the potential energy at their initial and final position.

Reason being that;

At both the initial and final position, velocity is 0, so there's no kinetic energy.

And the potential energy remains the same (i.e constant) at any given point in the system.

Using P.E = mgh.

At initial position, PE1 = mgh

At final position, PE2 = (m + M)gH.

Where h and H represent the initial and final heights.

m + M is the new weight after Jane and Tarzan swing

Equating PE1 to PE2

mgh = (m + M)gH

By substituton (M = 2m)

mgh = (m + 2m)gH

mgh = 3mgH

Make H the subject of the formula

H = mgh/3mg

H = ⅓h

Hence, the maximum height Tarzan and Jane can swing as a fraction of her initial heigh is ⅓h

From the question, the new height looks to be about ½ that of Jane's original position; i.e. ½h

The calculated height is smaller than what the cartoon is showing;

We can conclude that the cartoon is wrong.

4 0
3 years ago
A block of mass 2 kg slides down a frictionless ramp of length 1.3 m tilted at an angle 25o to the horizontal. At the bottom of
marin [14]

Answer:

Diagrams in pictures

Explanation:

Using energy I can get

m g h = 1/2 m v^2

So the velocity at the end of the ramp is the squareroot of two times the initial height of the box times the gravity constant.

(H= 1,3m sin25)

V=2,32m/s

V= a t

And

X= v t +1/2 a t^2

Knowing v=2,32 m/s and x= 1,3 m

I can get

a= 6,21m/s2

F= m a

I can get the force of the box when it collides with the spring

F= 12, 425 N

The force the spring makes on the box then is

F = -12,425N = -k d

Then the spring's constant is k= 51,75N/m

To make the two diagrams I need the functions of time when the box slows down

I use the same two equations

V= a t

And

X= v t + 1/2 a t^2

Being now 2,32 my initial velocity and 0 my final velocity, and my distance 0,24 m.

I get there the time t=0,0689 seconds and the acceleration a= -33,67 m/s2 (negative because it's slowing down).

Then,

V(t)= - 33,67 m/s2 t for time between 0 and 0,689 sec

X(t)= 2,32 m/s t + 1/2 33,67 m/s2 t^2.

for time between 0 and 0,689 sec

Diagrams and equations are in the pictures

7 0
3 years ago
Arrange the balls in order from greatest amount of gravitational potential energy to least.
Ratling [72]
All of them have the same potential energy <span />
8 0
3 years ago
Read 2 more answers
All of the outer planets are much larger than the inner planets true or false
Rama09 [41]
That statement is false because yes Jupiter and Saturn are large, however, planets like Uranus and Neptune are quite small if not smaller than some of the inner planets. 
4 0
3 years ago
In the diagram below, a heavy box is being lifted. What is the function of the pulley in this situation?
zepelin [54]
I believe the correct answer from the choices listed above is option B. The function of the pulley in this situation is to change the direction of the input force. <span> The </span>pulley<span> simply turns a force in one direction into a force in another direction. Hope this answers the question. Have a nice day.</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Marcus used a toaster oven in the morning.He notices that when he plug it in and turn it on the coils inside begin to glow red w
    13·1 answer
  • In a fusion reaction, the nuclei of two atoms join to form a single atom of a different element. In such a reaction, a fraction
    5·1 answer
  • The process by which rods and cones become less sensitive to light is called ________.
    14·1 answer
  • Momentum is a measure of the<br> of an object.<br> Which term accurately completes the sentence?
    11·2 answers
  • Technician A says that one of advantages of a clutch brake is its ability to bring a vehicle to a halt at low speeds. Technician
    12·1 answer
  • R o b l o x is down today
    6·1 answer
  • What is the smallest particle of an element that still retains of that element
    9·1 answer
  • A good alternative to sit ups is<br><br> A. Crunches<br><br> B. Leg Raises<br><br> C. Side Twists
    9·1 answer
  • How did the social structure of ancient Rome affect the lives of its people?
    12·1 answer
  • An ocean liner leaves New York City and travels 18.0o north of east for 155 km. How far east and how far north has it gone? In o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!