1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
5

What do physicist use to help us understand how things move and work?

Physics
1 answer:
Rashid [163]3 years ago
6 0

Answer:

Models,Mathematics

am not sure pliz mark brainliest

Explanation:

You might be interested in
Are the units of the formula ma = mv2/2 dimensionally consistent? Select the single best answer.
Vesnalui [34]

To solve the problem we will simply perform equivalence between both expressions. We will proceed to place your units and develop your internal operations in case there is any. From there we will compare and look at its consistency

ma = \text{Mass}\times \text{Acceleration}

ma = kg \cdot \frac{m}{s^2}

At the same time we have that

\frac{1}{2}mv^2 = \text{Mass}\times \text{Velocity}^2

\frac{1}{2}mv^2 = kg ( \frac{m}{s})^2

\frac{1}{2}mv^2 = kg \cdot \frac{m^2}{s^2}

Therefore there is not have same units and both are not consistent and the correct answer is B.

5 0
4 years ago
Do magnets have to touch each other in order to experience a magnetic force
romanna [79]
No they do not they just need to be in each other's magnetic field
8 0
4 years ago
Read 2 more answers
If object A has more mass than object B, what will object A need to accelerate at the same rate as object B?
Leni [432]

Answer:

More force

Explanation:

Object A has more mass than object B

  For object A to accelerate at the same rate as object B, it will need more force.

According to Newton's second law of motion "the net force on a body is the product of its mass and acceleration".

  Net force  = mass x acceleration

Now, if a body has more mass and needs to accelerate at the same rate as another one with a lower mass, the force on it must be increased.

3 0
3 years ago
A car starts from rest and travels for 5.8 s with a uniform acceleration of 1.6 m/s² in the negative direction. What is the fina
elena-s [515]

Answer:

Final velocity of the car will be -9.28 m/sec        

Explanation:

We have given that the car starts from the rest so initial velocity of the car u = 0 m /sec

Acceleration of the car a=1.6m/sec^2 in negative direction so acceleration will be a=-1.6m/sec^2

From first equation of motion we know that

v = u+at

So v=0+(-1.6)\times 5.8=-9.28m/sec

So final velocity will be -9.28 m/sec

8 0
3 years ago
How does the motion of atoms relate to hot air balloons?
Neporo4naja [7]
Magic magic and more magic
6 0
4 years ago
Other questions:
  • A motorcycle is moving at a constant velocity of 15 meters/second. Then it starts to accelerate and reaches a velocity of 24 met
    11·2 answers
  • What type of energy is kinetic energy
    8·2 answers
  • Is this statement true or false? Kingdom Animalia includes only vertebrate organisms. A. True B. False
    9·2 answers
  • In 1986, an enormous iceberg broke away from the Ross Ice Shelf in Antarctica. It was an approximately rectangular prism 160 km
    9·1 answer
  • The symbol, "I" represents-<br><br> a. voltage <br> b. power<br> c. current<br> d. resistance
    8·1 answer
  • Electromagnetic waves travel through space at a speed of _____.
    7·2 answers
  • A 75 kg football player is gliding forward across very smooth ice at 4.6 m/s. He throws a 0.47 kg football straight forward. A)
    13·1 answer
  • 15 g of lead (specific heat = 0.128 J/g Celsius) at 120 Degrees Celsius is placed on a glacier of ice at 0 degrees Celsius. How
    10·1 answer
  • This is my first question don’t really know how to use this app yet lol but somebody answer it for me pls!! Seded the corredare
    15·1 answer
  • A naval station sees waves with 5.6 meters between crests, and these waves hit the station every 4.25 seconds.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!