Answer:
v = 1.7 m/s
Explanation:
Given that,
Initial velocity of the object, u = 1 m/s
Acceleration of the object, a = 1 m/s²
We need to find the velocity of the object after moving 1 m. Let v be the velocity. Using third equation of kinematics to find it i.e.

So, the final velocity of the object is 1.7 m/s.
Answer:
a)
, b)
, c)
.
Explanation:
a) Let assume that car travel on a horizontal surface. The equations of equilibrium of the car are:


After some algebraic handling, the following expression for the propulsion force is constructed:



b) The power require to move the car at a speed of 5 meters per second is:



c) The efficiency of the car is:


Answer:
The spring constant = 9.25 N/m
Explanation:
The equation of an object attached to a spring that is oscillating is
T = 2π√(m/k)
Where T = period of the oscillation, m = mass of the object, k = spring constant.
Making k the subject of the equation,
k = 4π²m/T²......................... Equation 1
Note: Period(T) is the time taken to complete one oscillation
Given: T = t/10 = 9.0/10 = 0.9 s, m = 190 g = 0.19 kg.
Constant: π = 3.14
Substitute these values into equation 1.
k = 4(3.14)²(0.19)/0.9²
k = 7.4933/0.81
k = 9.25 N/m
Thus the spring constant = 9.25 N/m
Answer:
The consecutive charge configuration has a more intense field than alternating
Explanation:
In each corner we place a different account there are only two different settings, see attached.
In the case of alternating charging (+ - + -) see diagram 1, the electric field in the center is canceled in pairs, resulting in a zero field
In the case of consecutive loads (+ + - -) in this case we have a result between the two charges, therefore the total field is
E = 2 k q / ra2 a cos 45
The consecutive charge configuration has a more intense field than alternating