Answer:
B. Salt, NaCl, is produced by the process of evaporation of seawater or brine. If the surface area of the water is increased, the same volume of water evaporates faster.
C. The Haber process combines hydrogen and nitrogen to make ammonia. The two gases are passed through a reactor under pressure and at high temperatures. If iron is added to the reactor, the yield of ammonia increases.
Explanation:
Evaporation of water is responsible for the production of sodium chloride also known as table salt. Sodium and chlorine are present in water. When more evaporation of water occurs, sodium and chlorine come close together forming sodium chloride. Haber process is responsible for the production of ammonia which is used as fertilizer. For speed up the process, catalyst is used such as iron in order to complete the reaction in less time. Iron binds hydrogen and nitrogen with each other.
Answer:
Explanation:
The difference between Polycrystalline and Amorphous materials is given as:
Polycrystalline:
- The atoms in the crystal lattice are arranged in an ordered manner.
- The particles in the crystal posses a particular geometry
- The crystal lattice have a specific temperature known as its Melting Point.
Amorphous:
- There is no specific order in the arrangement of particles in the crystal.
- They do not have any particular geometry.
- There is no specific temperature but a range of temperature in which the crystal melts.
The properties of crystalline materials can be constrained by modifying the grain size at the hour of the amalgamation. The mechanical properties can be improved by choosing the grain size so that the quantity of disengagements and grain limits are expanded.
Usually this should be possible by diminishing the grain size, yet it additionally relies on a ton of different elements relying on the application. The quality of the material is expanded when the grain size is decreased.
Usefulness of smaller grains:
At the point when the size of the grains is decreased to a degree of 100 nm to 1000 nm, we can say we had acquired smaller grain which can be called as ultra-fine grain materials.
These can be utilized widely for the assembling of nanomaterial which are having a tremendous assortment of utilization and the new regions of use are expanding by step by step.
Usefulness of smaller grains:
Larger grains size is valuable in light dissipating applications, huge size grain has high perceivability to the light and it very well may be utilized in dispersing applications. Larger molecule size is utilized in specific responses to restrict the reactivity to a specific degree.
Applications of Amorphous Material:
- The amorphous carbon is utilized for the production of Ta-C films which can be utilized for the applications in ultra-flimsy defensive coatings for attractive plates, in cells, batteries and sun powered cells, to keep up inactive layers in electronic gadgets, etc.
- Amorphous silicon is utilized for the assembling of the Thin Film Transistor (TFT) which is in the end be utilized for computerized x-beam picture detecting, coordinated shading sensors, sensors for CMOS cameras, light-radiating diodes, and so on.