Answer:
M KIO3 = 1.254 mol/L
Explanation:
∴ w KIO3 = 553 g
∴ mm KIO3 = 214.001 g/mol
∴ volumen sln = 2.10 L
⇒ mol KIO3 = (553 g)×(mol/210.001 g) = 2.633 mol
⇒ M KIO3 = (2.633 mol KIO3 / (2.10 L sln)
⇒ M KIO3 = 1.254 mol/L
Answer:
c is the speed of light
Explanation:
E: energy
m: mass
c2: speed of light squared
Answer:

Explanation:
The ideal gas law equation is an equation that relates some of the quantities that describe a gas: pressure, volume and temperature.
The equation is:

where
p is the pressure of the gas
V is the volume of the gas
n is the number of moles of the gas
R is the gas constant
T is the absolute temperature of the gas (must be expressed in Kelvin)
Here we want to solve the equation isolating p, the pressure of the gas.
We can do that simply by dividing both terms by the volume, V. We find:

So, we see that:
- The pressure is directly proportional to the temperature of the gas
- The pressure is inversely proportional to the volume of the gas
There is a maximum of two electrons in the outer shell.
In thermal cracking, high temperatures (typically in the range of 450°C to 750°C) and pressures (up to about 70 atmospheres) are used to break the large hydrocarbons into smaller ones. Thermal cracking gives mixtures of products containing high proportions of hydrocarbons with double bonds - alkenes.