Answer:
0.2 m/s^2
Explanation:
initial speed 14m/s
final speed 20m/s
acceleration:
(20m/s - 14m /s) /30s = (6m/s)/30s = 0.2 m/s^2
Answer:
The reason we can't feel it is that the air within our bodies (in our lungs and stomachs, for example) is exerting the same pressure outwards, so there's no pressure difference and no need for us to exert any effort.
We shall convert all of the densities to lbs/gal, so the product of
BTU/lbs and lbs/gal gives us the basis of comparison, which was "ratio of energy to volume".
grams / ml x 1 lbs/454 grams → 1 lbs/ 454 ml
1 lbs/454 ml x 3785.41 ml/gal → 3785.41 lbs/454gal
Conversion of g/ml = 8.34 lbs/gal
Looking at each fuel:
Kerosene:
18,500 x (8.34 x 0.82) = 126,517 BTU/gal
Gasoline:
20,900 x (8.34 x 0.737) = 128,463 BTU/gal
Ethanol:
11,500 x (8.34 x 0.789) = 75,673 BTU/gal
Hydrogen:
61,000 x (8.34 x 0.071) = 36,120 BTU/gal
The best fuel in terms of energy to volume ratio is Gasoline.
Gallons required:
BTU needed / BTU per gallon
= 85.2 x 10⁹ / 128,463
= 6.6 x 10⁵ gallons
Answer:
Mineral Wool
Explanation:
The mineral wool is a porous material that restricts thermal energy by trapping air in.
Answer:
The acceleration of the both masses is 0.0244 m/s².
Explanation:
Given that,
Mass of one block = 602.0 g
Mass of other block = 717.0 g
Radius = 1.70 cm
Height = 60.6 cm
Time = 7.00 s
Suppose we find the magnitude of the acceleration of the 602.0-g block
We need to calculate the acceleration
Using equation of motion

Where, s = distance
t = time
a = acceleration
Put the value into the formula



Hence, The acceleration of the both masses is 0.0244 m/s².