<span>First question: The type of energy involved when a river moves sediment and erodes its banks is: option d. Kinetic energy. Kinetic energy is the energy associated with motion. A body (in this case the water) that moves has an energy associated with its motion that is proportional to the speed (exactly to the square of the speed). When the water collides with the banks it is the kinetic energy of the river that erodes it Second question: the answer is the option d. As gravity pulls water down a slope potential energy changes to knietic energy. This is the, water loses altitude and gains velocity. The potential energy. which is proportional to the height, decreases and the kinetic energy, which is proportional to the square of the speed, increases.</span>
Explanation:
charles law V1/T1 =V2/T2
560 x 673 =V2/973
376880 = V2/973
V2 = 376880 x 973 = 366704240mL
Answer:
330.5 m
Explanation:
In this case, the object is launched horizontally at 30° with an initial velocity of 40 m/s .
The maximum height will be calculated as;

where ∝ is the angle of launch = 30°
vi= initial launch velocity = 40 m/s
g= 10 m/s²
h= 40²*sin²40° / 2*10
h={1600*0.4132 }/ 20
h= 661.1/2 = 330.5 m
Answer:
The second object takes 2.28 s to fall the 25.5 m.
Explanation:
In this case, both objects take the same time to fall, since <em>no vertical velocity is added </em>to any of them.
You can also confirm this by sepparating the second's object movement into its two directions: in the horizontal one, we have <em>linear uniform motion, </em>and in the vertical one, we have <em>free fall, </em>with exactly the same characteristics as for the first object.
An increase in humidity can strengthen the water cycle, because humidity is essentially boosted evaporation. When you have evaporation, that comes automatically with condensation and precipitation, so rain and cloud cover increases.