Answer:
"Macro Instruction"
Explanation:
A macro definition is a rule or pattern that specifies how a certain input sequence should be mapped to a replacement output sequence according to a defined procedure. The mapping process that instantiates a macro use into a specific sequence is known as macro expansion.
It is a series of commands and actions that can be stored and run whenever you need to perform the task. You can record or build a macro and then run it to automatically repeat that series of steps or actions.
Answer:
a) The final equilibrium temperature is 83.23°F
b) The entropy production within the system is 1.9 Btu/°R
Explanation:
See attached workings
Answer:
import java.util.Scanner;
public class FindMatchValue {
public static void main (String [] args) {
Scanner scnr = new Scanner(System.in);
final int NUM_VALS = 4;
int[] userValues = new int[NUM_VALS];
int i;
int matchValue;
int numMatches = -99; // Assign numMatches with 0 before your for loop
matchValue = scnr.nextInt();
for (i = 0; i < userValues.length; ++i) {
userValues[i] = scnr.nextInt();
}
/* Your solution goes here */
numMatches = 0;
for (i = 0; i < userValues.length; ++i) {
if(userValues[i] == matchValue) {
numMatches++;
}
}
System.out.println("matchValue: " + matchValue + ", numMatches: " + numMatches);
}
}
Answer:
Check the explanation
Explanation:
Kindly check the attached images below to see the step by step explanation to the question above.
Answer:
The inventor's claim is false in the sense that no thermal machine can violate the first thermodynamic law.
Explanation:
The inventor's claim could not be possible as no thermal machine can transfer more heat than the input work consumed. If we expose the thermal efficiency:
Where Q and W both must be in the same power unit, so we will convert the remove heat from BTU/hr to hp:
Therefore by comparing, we notice that the removing heat of 4.75 hp is large than the delivered work of 1.11 hp. By evaluating the efficiency:
[tex]n=4.75 hp / 1.1 hp = 4.3 > 1[/tex]