Answer:
The level of the water will be higher for 100g Al because occupy more space than gold.
Explanation:
To understand this problem, we must know Archimedes' principle:
"A body that is submerged in a fluid produce a bouyant force equal to the weight of the fluid that the body displaces". The volume of the body is equal to the volume displaced in the liquid.
Now, as gold is heavier than aluminium, 100g of Al have more volume than 100g of gold, than means:
<h3>The level of the water will be higher for 100g Al because occupy more space than gold.</h3>
Answer:
aphelion
Explanation:
A planet moves with constantly changing speed as it moves about its orbit. The fastest a planet moves is at perihelion (closest) and the slowest is at aphelion (farthest).
Answer:
1, 2, and 3 are true.
Explanation:
The Henderson-Hasselbalch equation is:
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
- If the pH of the solution is known as is the pKa for the acid, the ratio of conjugate base to acid can be determined. <em>TRUE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If you know pH and pka:
10^(pH-pka) = ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
The ratio will be: 10^(pH-pka)
- At pH = pKa for an acid, [conjugate base] = [acid] in solution. <em>TRUE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
0 = log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
10^0 = ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
1 = ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
As ratio is 1, [conjugate base] = [acid] in solution.
- At pH >> pKa for an acid, the acid will be mostly ionized. <em>TRUE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If pH >> pKa, 10^(pH-pka) will be >> 1, that means that you have more [A⁻] than [HA]
- At pH << pKa for an acid, the acid will be mostly ionized. <em>FALSE</em>
pH = pka + log₁₀ ![\frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If pH << pKa, 10^(pH-pka) will be << 1, that means that you have more [HA] than [A⁻]
I hope it helps!
Answer:
rate = kxyz
Explanation:
It is worth knowing that the rate low can only be determined by experimentation only not by just balancing equations. So here we are told that all the reactants x , y and z are all first order. This is important because we use this as exponents. That is why the exponents of all the reactants will be 1.
rate = kxyz