Answer:
F = 1.24*10^4 N
Explanation:
Given
Depth of the ship, h = 25 m
Density of water, ρ = 1.03*10^3 kg/m³
Diameter of the hatch, d = 0.25 m
Pressure of air, P(air) = 1 atm
Pressure of water =
P(w) = ρgh
P(w) = 1.03*10^3 * 9.8 * 25
P(w) = 2.52*10^5 N/m²
P(net) = P(w) + P(air) - P(air)
P(net) = P(w)
P(net) = 2.52*10^5 N/m²
Remember,
Pressure = Force / Area, so
Force = Area * Pressure
Area = πr² = πd²/4
Area = 3.142 * 0.25²/4
Area = 3.142 * 0.015625
Area = 0.0491 m²
Force = 0.0491 * 2.52*10^5
F = 12373 N
F = 1.24*10^4 N
Answer:
1.843 x 10^-5 C
Explanation:
<u><em>Givens:
</em></u>
It is given that the air starts ionizing when the electric field in the air exceeds a magnitude of 3 x 10^6 N/C, which means that the max electric field can stand without forming a spark is 3 x 10^6 N/C.
Also it is given that the radius of the disk is 50 cm, it is required to find out the max amount of charge that the disk can hold without forming spark, which means the charge that would produce the max magnitude of the electric field that air can stand without forming spark, and since we know that the electric field in between 2 disk "Capacitor" is given by the following equation
E = (Q/A)/∈o (1)
Where,
Q: total charge on the disk.
A: the area of the disk.
<u><em>Calculations: </em></u>
We want to find the quantity of charge on the disk that would produce an electric field of 3 x 10^6 N/C, knowing the radius of the disk we can find the cross-section of the disk, thus substituting in equation (1) we find the maximum quantity of charge the disk can hold
Q = EA∈o
= (3 x 10^6) x (π*0.50) x (8.85 x 10^-12)
= 1.843 x 10^-5 C
note:
calculations maybe wrong but method is correct
Answer:
D. 18.60
Explanation:
By the law of conservation, the momentum is neither loss nor gained but instead transfered. When they crash into each other, and stick, they combine to create a total mass of 215 kg. Since the momentum is transfered, the two objects, combined, have a total momentum of 4000 kg-m/s. We know that momentum equals mass times velocity. You then divide 4000 by 215 and get approximately 18.6 m/s
The canoe is moving at 14.1 m/s to the right after the collision.
Explanation:
According to the law of conservation of momentum, in absence of external forces the total momentum of the system must be conserved before and after the collision. So we can write:
where:
is the mass of the canoe
is the initial velocity of canoe (we take right as positive direction, and since the canoe is moving to the left, its velocity is negative)
is the final velocity of the canoe
is the mass of the raft
is the initial velocity of the raft
is the final velocity of the raft
Re-arranging the equation and substituting the values, we find: the final velocity of the canoe:

So, the canoe is moving at 14.1 m/s to the right after the collision.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly