Answer:
Explanation: what do you need help on??? :?
Okay well it is saying you will have to give the vaccine to the patient from the shot thingy i guess
Answer:
23.2 g of Al will be left over when the reaction is complete
Explanation:
2Al + 3S → Al₂S₃
1 mol of Al = 26.98 g
1 mol of S = 32.06 g
Mole = Mass / Molar mass
63.8 g/ 26.98 g/m = 2.36 mole of Al
72.3 g / 32.06 g/m = 2.25 mole of S
2 mole of Aluminun react with 3 mole of sulfur
2.36 mole of Al react with (2.36 .3)/2 = 3.54 m of S
As I have 2.25 mole of S, and I need 3.54 S, is my limiting reagent so the limiting in excess is the Al.
3 mole of S react with 2 mole of Al
2.25 mole of S react with (2.25 m . 2)/3 = 1.50 mole
I need 1.50 mole of Al and I have 2.36, that's why the Al is in excess.
2.36 mole of Al - 1.50 mole of Al = 0.86 mole
This is the quantity of Al without reaction.
Molar mass . mole = Mass → 26.98 g/m . 0.86 m = 23.2 g
Answer:
11 1/2 cm I think lol
Explanation:
it is in between the 11 and 12 mark
Answer:
uhh the first one is the baby plants are gentically simulator to the parent if its wrong im sorry
Explanation:
Answer:
2.03 atm
Explanation:
Number of moles of He = 1g/4g/mol = 0.25 moles
Number of moles of F2 = 14.0g/38 g/mol = 0.37 moles
Number of moles of Ar=19.0g/40g/mol = 0.48 moles
Total number of moles = 0.25 + 0.37 + 0.48 = 1.1 moles
From;
PV=nRT
P= pressure of the gas mixture
V= volume of the gas mixture
n= total number of moles of the gas mixture
R= gas constant
T= temperature of the gas mixture
P= nRT/V
P= 1.1 × 0.082 × 293/13
P= 2.03 atm