The sun also heats up the air in the atmosphere at the equator. This air will move towards the poles & cool over time. In the process, wind that occurs due to air currents will introduce currents at the surface of the ocean. Wind & Air
According to this question, a substance with a high volatility readily evaporates.
<h3>What is volatility?</h3>
Volatility is the characteristics of a material which describes how readily the material undergo vaporization.
Volatile substances readily change phase from solid or liquid to gases via the process of vaporization.
Therefore, according to this question, a substance with a high volatility readily evaporates.
Learn more about volatility at: brainly.com/question/1603761
Answer:
I attached the answer as an image. I also drew in the two most acidic hydrogens.
Explanation:
This goes through the 'benzyne' intermediate, meaning it does an E2-looking reaction by expelling a leaving group (chloride) from the adjacent part of the ring using the amide as a strong base. The triple-bonded benzyne has absurd bond angle strain, and is vulnerable to a good nucleophile like an amide ion, and the resultant sp2 anion is then reprotonated by the acid. I didn't draw in the acid-base reaction in step one, or the spectator ion (sodium).
Answer:
0.940mol &
0.000301mol respectively.
Explanation:
number of moles = given mass / molar mass
given mass of Nacl = 55g Molar mass = 23 + 35.5
n=m/M = 55g/58.5g/mol = 0.940mol
note- (add the atomic weights of sodium and chlorine to get the molar mass of Nacl.) = 58.5g/mol
similarly, NaCO3 = 23 + 12 + 16*3 = 83g/mol
n=m/M = 0.025g/83g/mol = 3.01 * 10^-4 = 0.000301mol
extra: If you ever get asked to put it in number of particles just use the relation of 1mole = 6.02 * 10^23 particles.
The molar volume of a gas at STP occupies <u>22.4 L.</u>
Option D
<u>Explanation:</u>
To find the volume of 1 mole of a gas at STP, we use the Ideal Gas Law. It is the general gas equation which gives the relation to the measurable quantities to an ideal gas as below,
P (pressure) × V (volume) = n (number of moles) × R (the gas constant) × T (temperature in Kelvin)
STP = 1 atm of pressure and 273 K for temperature
P = 1 atm
V = ?
n = 1 mole
R = 0.0821 atm L/mol K
T = 273 K
Using the equation,


By substituting the above values, in the equation,

V = 22.38 L