Answer:
A) 29.9g
Explanation:
first find the weight of 1 staple.
then multiply with 225
Answer : The number of moles in 369 grams of calcium hydroxide is, 4.98 moles
Explanation : Given,
Mass of calcium hydroxide = 369 g
Molar mass of calcium hydroxide = 74.093 g/mole
Formula used :

Now put all the given values in this formula, we get the moles of calcium hydroxide.

Therefore, the number of moles in 369 grams of calcium hydroxide is, 4.98 moles
The molar mass of the unknown gas is 184.96 g/mol
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>How to determine the molar mass of the unknown gas </h3>
The following data were obtained from the question:
- Rate of unknown gas (R₁) = R
- Rate of CH₄ (R₂) = 3.4R
- Molar mass of CH₄ (M₂) = 16 g/mol
- Molar mass of unknown gas (M₁) =?
The molar mass of the unknown gas can be obtained as follow:
R₁/R₂ = √(M₂/M₁)
R / 3.4R = √(16 / M₁)
1 / 3.4 = √(16 / M₁)
Square both side
(1 / 3.4)² = 16 / M₁
Cross multiply
(1 / 3.4)² × M₁ = 16
Divide both side by (1 / 3.4)²
M₁ = 16 / (1 / 3.4)²
M₁ = 184.96 g/mol
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
Answer:
pH = 13.1
Explanation:
Hello there!
In this case, according to the given information, we can set up the following equation:

Thus, since there is 1:1 mole ratio of HCl to KOH, we can find the reacting moles as follows:

Thus, since there are less moles of HCl, we calculate the remaining moles of KOH as follows:

And the resulting concentration of KOH and OH ions as this is a strong base:
![[KOH]=[OH^-]=\frac{0.00576mol}{0.012L+0.032L}=0.131M](https://tex.z-dn.net/?f=%5BKOH%5D%3D%5BOH%5E-%5D%3D%5Cfrac%7B0.00576mol%7D%7B0.012L%2B0.032L%7D%3D0.131M)
And the resulting pH is:

Regards!