The potential difference between points a and b is zero.
<h3>Total emf of the series circuit</h3>
The total emf in the circuit is the sum of all the emf in the circuit.
emf(total) = 1.5 + 1.5 = 3.0 V
<h3>Potential difference</h3>
The potential difference between two points, a and b is calculated as follows;
V(ab) = Va - Vb
V(ab) = 1.5 - 1.5
V(ab) = 0
Thus, the potential difference between points a and b is zero.
Learn more about potential difference here: brainly.com/question/3406867
Answer:
0.438kg/ms-¹
Explanation:
Momentum, denoted by p, can be calculated by using the formula;
p = mv
Where;
m = mass (kg)
v = velocity (m/s)
Momentum (p) of bird = 0.216 kg × 5.87 m/s = 1.268kg/ms-¹
Momentum (p) of crawling baby = 7.29 kg kg × 0.234 m/s = 1.706kg/ms-¹
Having calculated the momentum of the bird to be 1.268kg/ms-¹, and the momentum of the baby to be 1.706kg/ms-¹, the difference in momentum between the flying bird and the crawling baby is:
{1.706kg/ms-¹ - 1.268kg/ms-¹} = 0.438kg/ms-¹
Answer:
In humans, each cell normally contains 23 pairs of chromosomes, for a total of 46.
Given: Velocity of light c = 3.00 x 10⁸ m/s
Frequency f = 7.65 x 10⁷/s
Required: Wavelength λ = ?
Formula: λ = c/f
λ = 3.00 x 10⁸ m/s/7.65 x 10⁷/s
λ = 3.92 m
You did not provide the options. However, the options are
I = 6.0, R= 4.0 ohms
I = 9.0, R= 2.0ohms
I = 3.0, R= 2.0ohms
I = 8.0, R= 8.0 ohms
Answer:
The order of the resistors from the highest to the lowest is:
I = 8.0, R= 8.0 ohms
I = 6.0, R= 4.0 ohms
I = 9.0, R= 2.0ohms
I = 3.0, R= 2.0 ohms
Explanation:
ohm's law states that voltage across a conductor is directly proportional to the current flowing through it. V = IR
Based on this formula, the voltages in each of the resistors are calculated below from the highest to the lowest
V = 8 * 8 =64 volts
V = 6 * 4 =24 volts
V = 9 * 2 =18 volts
V = 3 * 2 =6 volts