Wind and Waves are the 2 main forms of erosion on coastline cliffs
It takes greater force to accelerate an object that has more mass. But the gravitational force between the Earth and an object is greater when the object hass more mass. It works out just right to make any object with any mass accelerate at the same rate.
Kinetic Energy = (1/2) (mass) (speed)
First runner: KE = (1/2) (45kg) (49 m/s) = 1,102.5 Joules
Second runner: KE = (1/2) (93kg) (9 m/s) = 418.5 Joules
The <em>first runner </em><em>has 163</em>% more kinetic energy than the second runner has.
6 is b. part B on 6 is a. 7 is a. partB ON 7 b
Answer:
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²
Explanation:
The additional information to the question is embedded in the diagram attached below:
The height between the dragster and ground is considered to be 0.35 m since is not given ; thus in addition win 0.75 m between the dragster and the parachute; we have: (0.75 + 0.35) m = 1.1 m
Balancing the equilibrium about point A;
F(1.1) - mg (1.25) = 
- 1200(9.8)(1.25) = 1200a(0.35)
- 14700 = 420 a ------- equation (1)
--------- equation (2)
Replacing equation 2 into equation 1 ; we have :

1320 a - 14700 = 420 a
1320 a - 420 a =14700
900 a = 14700
a = 14700/900
a = 16.33 m/s²
The deceleration of the dragster upon releasing the parachute such that the wheels at B are on the verge of leaving the ground is 16.33 m/s²