Complete question:
Point charges q1=- 4.10nC and q2=+ 4.10nC are separated by a distance of 3.60mm , forming an electric dipole. The charges are in a uniform electric field whose direction makes an angle 36.8 ∘ with the line connecting the charges. What is the magnitude of this field if the torque exerted on the dipole has magnitude 7.30×10−9 N⋅m ? Express your answer in newtons per coulomb to three significant figures.
Answer:
The magnitude of this field is 826 N/C
Explanation:
Given;
The torque exerted on the dipole, T = 7.3 x 10⁻⁹ N.m
PEsinθ = T
where;
E is the magnitude of the electric field
P is the dipole moment
First, we determine the magnitude dipole moment;
Magnitude of dipole moment = q*r
P = 4.1 x 10⁻⁹ x 3.6 x 10⁻³ = 1.476 x 10⁻¹¹ C.m
Finally, we determine the magnitude of this field;
E = 826 N/C (in three significant figures)
Therefore, the magnitude of this field is 826 N/C
Answer:
water
Explanation:
water is not an element, it is a molecule
First, we convert kcal to joules:
1 kcal = 4.184 kJ
475 kcal = 1987.4 kJ
Now, calculating the change in internal energy:
ΔU = Q + W; where Q is the heat supplied to the system and W is the work done on the system.
ΔU = -500 + 1987.4
ΔU = 1487.4 kJ