Answer:
B. stearothermophilus and S. ruber
Explanation:
B. stearothermophilus and S. ruber
In solar evaporation ponds the temperature is higher and the salt concentration is also higher because of the water evaporated so sunder such extreme conditions this hybrid bacteria is capable of surviving. B. stearothermophilus is thermophilus bacteria which grows at high temperature and S. ruber is halophilic bacteria which grows in saline environment. So, these two bacteria best suited for the above hybrid condition.
Our year would now be 2.8 times longer, we would also be receiving only 1/4 of the energy from the sun that we currently do. This means that we’d now be out beyond the orbit of Mars and right at the edge of the asteroid belt, and things would rapidly get very cold with temperatures expected to drop by around 50 degrees Celsius on average, and that’s with our current atmospheric composition which would not be stable in the new conditions. And also, any living thing on earth would die.
CaS is the empirical formula of the compound between calcium and sulphur that has the percent composition 55.6.
When percentages are given, we take a total mass of 100 grams.
Therefore the mass of each element is equal to the percentage given.
Mass of Ca = 55.6 g (given) of
S Mass = 44.4 g (100 - 55.6 = 44.4)
Step 1: Convert the given mass to moles.
moles Ca = given mass Ca / molar mass Ca
moles = 55.6 / 40 = 1.39 moles
mol S = specific mass S / molar mass S
mol = 44.4 / 32 = 1.39 mol
Step 2: Divide the molar ratio of each molar value by the smallest number of moles calculated.
For Ca = 1.39 / 1.39 = 1
For S = 1.39 / 1.39 = 1
The ratio of Ca : S = 1:1
Hence the empirical formula of the given compound will be CaS.
Learn more about empirical formula here : brainly.com/question/1496676
#SPJ4
Answer:
The object will move to Xfinal = 7.5m
Explanation:
By relating the final velocity of the object and its acceleration, I can obtain the time required to reach this velocity point:
Vf= a × t ⇒ t= (7.2 m/s) / (4.2( m/s^2)) = 1,7143 s
With the equation of the total space traveled and the previously determined time I can obtain the end point of the object on the x-axis:
Xfinal= X0 + /1/2) × a × (t^2) = 3.9m + (1/2) × 4.2( m/s^2) × ((1,7143 s) ^2) =
= 3.9m + 3.6m = 7.5m