Let's think, if you have a candle ( that is not blown out ) the physical properties are the candles mass and hence ( hence of the candle is the stiffness of the candle), weight, length, density, surface friction ( force resisting the relative motion of solid surface), and the energy content. You then, need to go to bed, so, therefore, you want to blow the candle out. Once you blow the candle out, the candle is evidently going to have at least a couple of different physical properties, than before it was blown out. The physical properties are a different color, the length of the candle, the texture, you could also apply the mass of the candleholder, and then, the mass of the candleholder and the candle, last but not least, the mass of just the candle. Once you observe the candle, you should be able to plug in those observations into the physical properties. As to, because you asked' what are the physical properties of a candle that has been blown out... We are going to assume that we did observe the candle, and the length of the candle in cm, after being blown out is 30cm. (12 inches; customary). Next, that the color of the candle is the same (let us say the original color is taffy pink). We can then say that the texture of the candle is waxy and the top and smooth as you get to the bottom ( the texture depends on how long the candle was burning, but we are saying that we lit the candle, and then immediately blew the flame out ) . We now have the mass of the candleholder, which will scientificity stay the same. Now, for the mass of the candleholder and the candle, that all depends of how long you let it burn ( remember, we are saying we lit the wick and then immediately blew the fame out ). So, the candle really didn't change is mass, so, therefore, wouldn't affect the mass of the candleholder including the candle. That also goes to the mass of the candle.
1.the chemical change color from colorless to purple
2. A yellow gas forms
3.a brown solid forms in the bottom of the beaker
4.the temperature of the chemicals rises 15 Celsius
Explanation:
All of the options are proofs that chemical change has occurred.
A chemical change is one with the following properties:
A new kind of matter is usually formed as seen by the gas evolution and the formation of the insoluble precipitate i.e brown solid at the bottom of the beaker.
They are not easily reversible.
Usually accompanied by energy changes as seen in the rise in temperature.
Color changes can also infer chemical changes in a reaction.
Temperature is the average kinetic energy of the particles of matter. the hotter something is the more kinetic energy it has. ... temperature heats up the particles they have more kinetic energy and move and bounce into each other and spread out.