Explanation:
Immunoglobulin M is the first antibody produced on initial exposure to an antigen. It is also known as IgM.
It occurs as a primary response to the antigens against a particular baterium or virus. It is pentavalent in nature and has ten binding sites for antigens.
Therefore, it is concluded that when the body identifies a bacterium or a virus, it releases the antibody IgM.
Answer:
A long lever with the fulcrum as close as possible to the load
Explanation:
If F be the effort , W be the weight , L₁ be the distance of load from fulcrum and L₂ be the distance of effort from the fulcrum ,
Taking moment of force about the fulcrum , we have
W x L₁ = F x L₂
F = W x ( L₁ / L₂ )
F will be minimum when L₁ will be minimum .
Hence fulcrum should be as close as possible to the load.
Answer:
27.60 g urea
Explanation:
The <em>freezing-point depression</em> is expressed by the formula:
In this case,
- ΔT = 5.6 - (-0.9) = 6.5 °C
m is the molality of the urea solution in X (mol urea/kg of X)
First we<u> calculate the molality</u>:
- 6.5 °C = 7.78 °C kg·mol⁻¹ * m
Now we<u> calculate the moles of ure</u>a that were dissolved:
550 g X ⇒ 550 / 1000 = 0.550 kg X
- 0.84 m = mol Urea / 0.550 kg X
Finally we <u>calculate the mass of urea</u>, using its molecular weight:
- 0.46 mol * 60.06 g/mol = 27.60 g urea
Answer:
ΔE = 73 J
Explanation:
By the first law of thermodynamics, the energy in the system must conserved:
ΔE = Q - W
Where ΔE is the internal energy, Q is the heat flow (positive if it's absorbed by the system, and negative if the system loses heat), and W is the work (positive if the system is expanding, and negative if the system is compressing).
So, Q = + 551 J, and W = + 478 J
ΔE = 551 - 478
ΔE = 73 J
Yes because the wind energy can power a gas pump, then the gas would go into some form of automobile