Answer:Water absorbs different wavelengths of light to different degrees. The longest wavelengths, with the lowest energy, are absorbed first. Red is the first to be absorbed, followed by orange & yellow. The colors disappear underwater in the same order as they appear in the color spectrum. Even water at 5ft depth will have a noticeable loss of red. For this reason, strobes are usually used to add color back to subjects.
Explanation:
Answer: nucleons
Explanation:
The nucleons are the particles that constitue the nuclei of the atoms. Those are protons and neutrons.
They are not elementary particles (quarks are the elementary particles that form both protons and neutrons).
Protons are the particles that define the elements. Any different elements have different number of protons. H has one proton, He has 2 protons, Li has three protons, Na has 11 protons, U has 92 protons.
Protons are positively charged and the number of protons in any neutral atom is equal to the number of electrons (the electrons, which are elementary negatively charged particles, are around the nucleous).
Neutrons have not charge and are responsible for the stability of the nuclei. They are fundamental to avoid that the repulsion forces between the positively charged protons ends causing the collapse of the nuclei.
Answer:
See explanation.
Explanation:
Hello there!
In this case, according to the described chemical reaction, we first write the corresponding equation to obtain:

Thus, we proceed as follows:
Part 1 of 3: here, since the molar mass of silver and copper (II) nitrate are 107.87 and 187.55 g/mol respectively, and the mole ratio of the former to the latter is 2:1, we can set up the following stoichiometric expression:

Part 2 of 3: here, the molar mass of copper is 63.55 g/mol and the mole ratio of silver to copper is 2:1, the mass of the former that was used to start the reaction was:

Part 3 of 3: here, the molar mass of silver nitrate is 169.87 g/mol and their mole ratio 2:2, thus, the mass of initial silver nitrate is:

Best regards!
Answer:
34,6g of (NH₄)₂SO₄
Explanation:
The boiling-point elevation describes the phenomenon in which the boiling point of a liquid increases with the addition of a compound. The formula is:
ΔT = kb×m
Where ΔT is Tsolution - T solvent; kb is ebullioscopic constant and m is molality of ions in solution.
For the problem:
ΔT = 109,7°C-108,3°C = 1,4°C
kb = 1.07 °C kg/mol
Solving:
m = 1,31 mol/kg
As mass of X = 600g = 0,600kg:
1,31mol/kg×0,600kg = 0,785 moles of ions. As (NH₄)₂SO₄ has three ions:
0,785 moles of ions×
= 0,262 moles of (NH₄)₂SO₄
As molar mass of (NH₄)₂SO₄ is 132,14g/mol:
0,262 moles of (NH₄)₂SO₄×
= <em>34,6g of (NH₄)₂SO₄</em>
<em></em>
I hope it helps!