Wassily Kandinsky invented abstract geometry :) have a good week
<span>The person is dragging
with a force of 58 lbs at an angle of 27 degrees relating to the ground. We
want to use cosine function to look for the horizontal force component. And
then we can compute for W = (Horizontal Force) x (Distance). We want the
horizontal force component since that is the component that is parallel to the
direction the cart is moving. </span><span>
(cos 27 degrees)(58 lbs) = 51.69 lbs (This is the horizontal
force component.)
W = (51.69 lbs) x (70 ft) = 3618.3 ft*lbs</span>
Answer:

Explanation:
Gravitational potential energy is the energy an object possesses due to its position. It is the product of mass, height, and acceleration due to gravity.

The object has a mass of 150 kilograms and is raised to a height of 20 meters. Since this is on Earth, the acceleration due to gravity is 9.8 meters per square second.
- m= 150 kg
- g= 9.8 m/s²
- h= 20 m
Substitute the values into the formula.

Multiply the three numbers and their units together.


Convert the units.
1 kilogram meter square per second squared (1 kg *m²/s²) is equal to 1 Joule (J). Our answer of 29,400 kg*m²/s² is equal to 29,400 Joules.

The crate has <u>29,400 Joules</u> of potential energy.
<span>Oxygen and Nitrogen would be the most similar of the elements listed, because they are the closest in the periodic table. This isn't a very good reason for anything, but the two do have some similar properties. They are both non-metals, they are both highly electronegative, they are both diatmoic gasses in their natural states, they have a similar number of valence electrons, they are both generally oxidizing agents. Oxygen and Chlorine are also quite similar, but not quite as similar as Oxygen and Nitrogen.</span>
Newtons. Force is mass times acceleration. Mass is measured in kilograms (kg) and acceleration is measured in meters per second squared (m/s^2.) These units (kg and m/s^2) multiplied together like in the equation force equals mass times acceleration (F=ma) gives a product with Newtons as the unit.