Pascal's law of fluid transfer states that when there is an increase in fluid pressure, the rest of the extrinsic variables also increases. For example, in a flow of liquid in an orifice, there is a contraction of diameter in the orifice part. The fluid that will go in there increases in pressure and thereby an increase in velocity as well.
Answer:
Both speed and velocity are changing.
Explanation:
They are both going up so both are changing
Answer:
a) Tc = 750 [N] ;b) See the explanation below.
Explanation:
To solve this problem, we first need a graphical explanation of this, as well as knowing the corresponding questions. Therefore, a search was carried out in google, in the attached image we will find a graphical description of the problem.
b)
The solution of this type of problem corresponds to the use of Newton's third law, applying static which tells us that the sum of the forces in a system in equilibrium without movement must be equal to zero.
a)
In this way we can find by means of a sum of forces on the y axis equal to zero:
- 850 - 450 + 550 + Tc = 0
Tc = 750 [N]
The applicable equation:
P = F/A
P = pressure
F = Force or weight
A = surface area
Pressure on each cylinder = (W/n)/A
Where n = number of cylinders. Additionally, pressure in the reservoir is equivalent to the pressure in each cylinder.
Net pressure = 75 - 14.7 = 60.3 psi
Therefore,
60.3 = (W/n)/A = (450/n)/(πD^2/4) = (450/n)/(π*1.5^2/4) = (450/n)/(1.7671)
60.3*1.7671 = 450/n
106.03 = 450/n
n = 450/106.3 = 4.244 ≈ 5
The number of cylinders is 5.