Balance the chemical equation for the chemical reaction.
Convert the given information into moles.
Use stoichiometry for each individual reactant to find the mass of product produced.
The reactant that produces a lesser amount of product is the limiting reagent.
The reactant that produces a larger amount of product is the excess reagent.
To find the amount of remaining excess reactant, subtract the mass of excess reagent consumed from the total mass of excess reagent given.
Answer:
There are multiple ways to check mass but I'll tell you one. Look below
Explanation:
One easy way of checking atomic mass is by adding protons and neutrons.
For example:
We have 5 protons and 4 neutrons.
5+4=9
I hope this helps (:
<h3><u>Answer</u>;</h3>
≈ 4.95 g/L
<h3><u>Explanation;</u></h3>
The molar mass of KCl = 74.5 g/mole
Therefore; 0.140 moles will be equivalent to ;
= 0.140 moles × 74.5 g/mole
= 10.43 g
Concentration in g/L
= mass in g/volume in L
= 10.43/2.1
= 4.9667
<h3> <u> ≈ 4.95 g/L</u></h3>
Answer is: this is an example of an Arrhenius acid.
An Arrhenius acid is a
substance that dissociates in water to form hydrogen ions or protons (H⁺).
For example hydrochloric acid: HCl(aq) → H⁺(aq) + Cl⁻(aq).
An Arrhenius base is a
substance that dissociates in water to form hydroxide ions (OH⁻<span>).
In this example lithium hydroxide is an Arrhenius base:</span>
LiOH(aq) → Li⁺(aq) + OH⁻(aq).