Answer:
After 1 sec = 4.9 m
After 2 sec = 19.6 m
After 3 sec = 44.1 m
After 4 sec = 78.4 m
After 5 sec = 122.5 m
Explanation:
After 1 sec:
<em>u=0m/s t=1 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(1) + (1/2)(9.8)(1²) = 4.9m
After 2 sec:
<em>u=0m/s t=2 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(2) + (1/2)(9.8)(2²) = 19.6m
After 3 sec:
<em>u=0m/s t=3 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(3) + (1/2)(9.8)(3²) = 44.1m
After 4 sec:
<em>u=0m/s t=4 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(4) + (1/2)(9.8)(4²) = 78.4m
After 5 sec:
<em>u=0m/s t=5 s a=9.8m/s²</em>
s = ut + (1/2)at²
=0(5) + (1/2)(9.8)(5²) = 122.5m
Atomic disguise makes helium look like hydrogen. ... A helium atom consists of a nucleus containing two positively charged protons and two neutrons, encircled by two orbiting electrons which carry a negative charge. A hydrogen atom has just one proton and one electron
Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is 
The speed of A is 
The uniform acceleration of B is 
Generally the time taken by go-cart A is mathematically represented as
=> 
=> 
Generally from kinematic equation we can evaluate the time taken by go-cart B as

given that go-cart B starts from rest u = 0 m/s
So

=>
=>
Comparing
we see that
is smaller so go-cart A is faster
Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
Answer:
tan 249 = 2.61
tan 249 = tan (249 - 180) = tan 69 = 2.61