It would be d and c hoped i helped!
In a series circuit the total current is the same throughout resistors and so:

The voltage is distributed throughout the resistors and so:

and the total resistance can be calculated by adding up the resistors resistance:

First thing is to calculate the total resistance and so:

And by Omh's law V=IR we have:

And so the total current of the circuit is 1.2 amps i.e. 1.2 A.
Answer:
I = 21.13 mA ≈ 21 mA
Explanation:
If
I₁ = 5 mA
L₁ = L₂ = L
V₁ = V₂ = V
ρ₁ = 1.68*10⁻⁸ Ohm-m
ρ₂ = 1.59*10⁻⁸ Ohm-m
D₁ = D
D₂ = 2D
S₁ = 0.25*π*D²
S₂ = 0.25*π*(2*D)² = π*D²
If we apply the equation
R = ρ*L / S
where (using Ohm's Law):
R = V / I
we have
V / I = ρ*L / S
If V and L are the same
V / L = ρ*I / S
then
(V / L)₁ = (V / L)₂ ⇒ ρ₁*I₁ / S₁ = ρ₂*I₂ / S₂
If
S₁ = 0.25*π*D² and
S₂ = 0.25*π*(2*D)² = π*D²
we have
ρ₁*I₁ / (0.25*π*D²) = ρ₂*I₂ / (π*D²)
⇒ I₂ = 4*ρ₁*I₁ / ρ₂
⇒ I₂ = 4*1.68*10⁻⁸ Ohm-m*5 mA / 1.59*10⁻⁸ Ohm-m
⇒ I₂ = 21.13 mA
Answer:
Instantaneous speed means speed at any instant
that means Speed is changing with time
You know speed is distance/time
So that means distance is also changing with time
So we take infinitesimal small distance per infinitesimal small time As we assume speed is constant in infinitesimal small time dt
So, we take speed = ds/dt
ds = infinitesimal small distance
dt = infinitesimal small time
As its ratio is equal to speed at any instant
Note : We are taking infinitesimal small distance
But :) we are taking infinitesimal small time also
As you know if denominator is small fraction is large So fraction always give large value
So it's not O ( this makes confuse to most of students)
So, thanks
Good question
Keep thinking like this :)