Velocity =2 pie*r/t
distance = 2 (pie) r
accelaretion =distance/t2
f=m*v2/r
v=square root of Fr/m
The wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
Explanation:
Hey there!!
Let's simply work with it.
Here,
load = 1200N
Effort = 200N
Load distance = 15cm
We have,
According to the principle of lever.
L×LD = E×ED.
1200×15 = 200× ED.
18000 = 200ED.

Therefore, Effort Distance = 90cm.
<em><u>Hope it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
2.67kg
Explanation:
The maximum velocity,
of a body experiencing simple harmonic motion is given by equation (1);

where
is the angular velocity and A is the amplitude.
The problem describes the oscillation of a loaded spring, and for a loaded spring the angular velocity is given by equation (2);

where k is the force constant of the spring and m is the loaded mass.
We can make
the subject of formula in equation (1) as follows;

We then combine equations (2) and (3) as follows;

According to the problem, the following are given;

We then substitute these values into equation (4) and solve for the unknown mass m as follows;


Squaring both sides, we obtain the following;
