Answer:
F1=26N and F2=09N ..this is from the two simultaneously equations
Answer:
C
Multiple groups of scientist met at a conference to discuss the theory of continental drift
Answer:
Vrel_jon's = 15 [m/s] to the right
Explanation:
Relative velocity is defined as the relative motion between two bodies, taking into account the directions of motion.
Relative velocity is defined as the relative motion between two bodies, taking into account the directions of motion. The relative velocity is defined as the algebraic sum of the velocities, if the movements are opposite the vectors are subtracted, as will be done below.
Vrel = 20 - 5 = 15 [m/s]
A person watching Jon sees him moving to the right at a speed of 15 [m/s]
Answer:
The engine would be warm to touch, and the exhaust gases would be at ambient temperature. The engine would not vibrate nor make any noise. None of the fuel entering the engine would go unused.
Explanation:
In this ideal engine, none of these events would happen due to the nature of the efficiency.
We can define efficiency as the ratio between the used energy and the potential generable energy in the fuel.
n=W, total/(E, available).
However, in real engines the energy generated in the combustion of the fuel transforms into heat (which heates the exhost gases, and the engine therefore transfering some of this heat to the environment). Also, there are some mechanical energy loss due to vibrations and sound, which are also energy that comes from the fuel combustion.