Answer:
0.677 moles
Explanation:
Take the atomic mass of K = 39.1, O =16.0, P = 31.0
no. of moles = mass / molar mass
no. of moles of K3PO4 used = 4.79 / (39.1x3 + 31 + 16x4)
= 0.02256 mol
From the equation, the mole ratio of KOH : K3PO4 = 3 :1,
meaning every 3 moles of KOH used, produces 1 mole of K3PO4.
So, using this ratio, let the no. of moles of KOH required to be y.

y = 0.02256 x3
y = 0.0677 mol
If you don't find exactly 0.677 moles as one of the options, go for the closest one. A very slight error may occur because of taking different significant figures of atomic masses when calculating.
Answer: The given statement is true.
Explanation:
According to the Dalton's law, total pressure of a mixture of gases that do not react with each other is equal to the partial pressure exerted by each gas.
The relationship is as follows.

or, 
where,
....... = partial pressure of individual gases present in the mixture
Also, relation between partial pressure and mole fraction is as follows.

where,
= mole fraction
Thus, we can conclude that the statement Dalton's law of partial pressures states that the total pressure exerted by a mixture of gases is the sum of the pressures exerted independently by each gas in the mixture, is true.
Answer:
½O 2 + 2e - + H 2O → 2OH.
Explanation:
Redox reactions - Higher
In terms of electrons:
oxidation is loss of electrons
reduction is gain of electrons
Rusting is a complex process. The example below show why both water and oxygen are needed for rusting to occur. They are interesting examples of oxidation, reduction and the use of half equations:
iron loses electrons and is oxidised to iron(II) ions: Fe → Fe2+ + 2e-
oxygen gains electrons in the presence of water and is reduced: ½O2 + 2e- + H2O → 2OH-
iron(II) ions lose electrons and are oxidised to iron(III) ions by oxygen: 2Fe2+ + ½O2 → 2Fe3+ + O2-
<h3>Further explanation</h3>
Basic oxides ⇒ metal(usually alkali/alkaline earth) +O₂
L + O₂ ⇒ L₂O
L + O₂ ⇒ LO
Dissolve in water becomes = basic solution
L₂O+H₂O⇒ 2LOH
LO + H₂O⇒ L(OH)₂
So the basic oxides : Na₂O and MgO
Na₂O + H₂O⇒NaOH
MgO +H₂O⇒Mg(OH)₂
The aqueous solution of CO₂(dissolve in water)
CO₂ + +H₂O⇒ H₂CO₃(carbonic acid)
Answer:
Taq polymerase is a thermostable which states that it can even work at higher temperature. The main function of using this enzyme is that it is used to amplify the DNA which will help in producing ample amount of DNA sample.
The enzyme activity is temperature dependent. The denaturation and annealing steps of the PCR occurs at very high temperature.
Any other enzyme used at such an high temperature would have decreased the enzyme activity and the procedure would not be completed.