Answer:
V = 26.95 cm³
Explanation:
Density is given by the formula :
ρ = m÷V
Density = mass ÷ Volume
Given both density and mass we rearrange, substitute and solve for Volume :
Rearranging the equation to make Volume the subject :
ρ = m÷V
ρV = m
V = m÷ ρ
Now substitute :
V = 45 ÷ 1.67
V = 26.9461077844
Take 2 decimal places as the density is 2 decimal places :
V = 26.95
Units will be cm³ as it is volume
Hope this helped and have a good day
Answer:
1. Electromagnetic waves travel in a vacuum whereas mechanical waves do not.
2. The ripples made in a pool of water after a stone is thrown in the middle are an example of mechanical wave. Examples of electromagnetic waves include light and radio signals.
3. Mechanical waves are caused by wave amplitude and not by frequency. Electromagnetic Waves are produced by vibration of the charged particles.
4. While an electromagnetic wave is called just a disturbance, a mechanical wave is considered a periodic disturbance.
Explanation:
Answer:
F = 2,894 N
Explanation:
For this exercise let's use Newton's second law
F = m a
The acceleration is centripetal
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
F = m w² r
The radius r and the length of the rope is related
cos is = r / L
r = L cos tea
Let's replace
F = m w² L cos θ
Let's reduce the magnitudes to the SI system
m = 101.7 g (1 kg / 1000g) = 0.1017 kg
θ = 5 rev (2π rad / rev) = 31,416 rad
w = θ / t
w = 31.416 / 5.1
w = 6.16 rad / s
F = 0.1017 6.16² 0.75 cos θ
F = 2,894 cos θ
The maximum value of F is for θ equal to zero
F = 2,894 N
Answer:
Greatest gravitational energy is at "C".
The planet has to do work "against" the field to get to "C".
Also, if m v R (angular momentum) is constant then as R increases v must decrease for this term to be constant and KE = 1/2 M v^2 must decrease also to get to point C.