Answer: Formula for Acceleration Due to Gravity
These two laws lead to the most useful form of the formula for calculating acceleration due to gravity: g = G*M/R^2, where g is the acceleration due to gravity, G is the universal gravitational constant, M is mass, and R is distance.please mark as brainliest
Explanation:
<span>The angular momentum of a particle in orbit is
l = m v r
Assuming that no torques act and that angular momentum is conserved then if we compare two epochs "1" and "2"
m_1 v_1 r_1 = m_2 v_2 r_2
Assuming that the mass did not change, conservation of angular momentum demands that
v_1 r_1 = v_2 r_2
or
v1 = v_2 (r_2/r_1)
Setting r_1 = 40,000 AU and v_2 = 5 km/s and r_2 = 39 AU (appropriate for Pluto's orbit) we have
v_2 = 5 km/s (39 AU /40,000 AU) = 4.875E-3 km/s
Therefore, </span> the orbital speed of this material when it was 40,000 AU from the sun is <span>4.875E-3 km/s.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Check-call-Care if you are training to be a life guard.