Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
Here,
height at failure, h1 = 525 m,
upward acceleration, a = 2.25 m/s^2,
velocity = v m/s,
<span>
SO, </span>
<span>
v^2 = 2*a*h = 2*2.25*525 = 2362.5 </span>
Now, acceleration, g = 9.8 m/s^2,
<span>
SO, </span>
<span>
heigt, h1 = v^2/2g = 2362.5 / 2*9.8 = 120.54 meters </span>
Hence,
<span>
a) </span>
Total height = 525+120.54 = 645.54 meters
b)
<span>time, for h1, t = v/g = sqrt(2362.5)/9.8 = 4.96 sec
---------------------------------
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!</span>
Working of a Half wave rectifier
The diode is connected in series with the secondary of the transformer and the load resistance RL. The primary of the transformer is being connected to the ac supply mains. The ac voltage across the secondary winding changes polarities after every half cycle of the input wave.
Heat!!!!!!!!!!!!!!!!!!! sorry about the exclamation marks but it wont let me post in less it has more than 20 characteristics