Answer:
7.98 × 10^3grams.
Explanation:
To find the mass of fluorine in the number of atoms provided, we first divide the number of atoms by Avagadros number (6.02 × 10^23atoms) to get the number of moles in the fluorine atom. That is;
number of moles (n) = number of atoms (nA) ÷ 6.02 × 10^23 atoms
n = 2.542 × 10^26 ÷ 6.02 × 10^23
n = 0.42 × 10^ (26-23)
n = 0.42 × 10^3
n = 4.2 × 10^2moles
Using mole = mass ÷ molar mass
Molar/atomic mass of fluorine (F) = 19g/mol
mass = molar mass × mole
Mass (g) = 19 × 4.2 × 10^2
Mass = 79.8 × 10^2
Mass = 7.98 × 10^3grams.
Given: wavelength of Nitrogen laser (∧) = 337.1 nm = 337.1 X 10^-9 m
We know that, Energy of photon (E) = hc/∧ = hv
where, v = frequency of photon and c = speed of light = 3 X 10^8 m/s
Thus, v = c/∧ = (3 X 10^8)/ (337.1 X 10^-9) = 8.899 X 10^14 s-1.
Answer: F<span>requency of nitrogen laser = </span>8.899 X 10^14 s-1.
Please refer to the attachment for a complete classification of your specified matter.
I don't know your options but maybe this bit of information will help, the boiling point of water is 212<span>°</span>F so at that temperature it will likely just start evaporating