<u>Answer:</u> The density of the given element is ![3.07g/cm^3](https://tex.z-dn.net/?f=3.07g%2Fcm%5E3)
<u>Explanation:</u>
To calculate the edge length, we use the relation between the radius and edge length for BCC lattice:
![R=\frac{\sqrt{3}a}{4}](https://tex.z-dn.net/?f=R%3D%5Cfrac%7B%5Csqrt%7B3%7Da%7D%7B4%7D)
where,
R = radius of the lattice = 0.17 nm
a = edge length = ?
Putting values in above equation, we get:
![0.17=\frac{\sqrt{3}\times a}{4}\\\\a=\frac{0.17\times 4}{\sqrt{3}}=0.393nm](https://tex.z-dn.net/?f=0.17%3D%5Cfrac%7B%5Csqrt%7B3%7D%5Ctimes%20a%7D%7B4%7D%5C%5C%5C%5Ca%3D%5Cfrac%7B0.17%5Ctimes%204%7D%7B%5Csqrt%7B3%7D%7D%3D0.393nm)
To calculate the density of metal, we use the equation:
![\rho=\frac{Z\times M}{N_{A}\times a^{3}}](https://tex.z-dn.net/?f=%5Crho%3D%5Cfrac%7BZ%5Ctimes%20M%7D%7BN_%7BA%7D%5Ctimes%20a%5E%7B3%7D%7D)
where,
= density
Z = number of atom in unit cell = 2 (BCC)
M = atomic mass of metal = 56.08 g/mol
= Avogadro's number = ![6.022\times 10^{23}](https://tex.z-dn.net/?f=6.022%5Ctimes%2010%5E%7B23%7D)
a = edge length of unit cell =
(Conversion factor:
)
Putting values in above equation, we get:
![\rho=\frac{2\times 56.08}{6.022\times 10^{23}\times (3.93\times 10^{-8})^3}\\\\\rho=3.07g/cm^3](https://tex.z-dn.net/?f=%5Crho%3D%5Cfrac%7B2%5Ctimes%2056.08%7D%7B6.022%5Ctimes%2010%5E%7B23%7D%5Ctimes%20%283.93%5Ctimes%2010%5E%7B-8%7D%29%5E3%7D%5C%5C%5C%5C%5Crho%3D3.07g%2Fcm%5E3)
Hence, the density of the given element is ![3.07g/cm^3](https://tex.z-dn.net/?f=3.07g%2Fcm%5E3)