Answer:
A. Element
Explanation:
Iron (Fe), chemical element and one of the transition elements, the most-used and cheapest metal.
Raising of the boiling point is a colligative property. That means that it depends on the number of particles dissolved. The greater the number of particles the greater the increase in the boiling point. So, you can compare the effect of these solutes in the increase of the boiling point by writing the chemical equations and comparing the number of particles dissolved: 1)ionic lithium chloride, LiCl(s) --> Li(+) + Cl (-) => 2 ions; 2) ionic sodium chloride, NaCl(s) --> Na(+) + Cl(-) => 2 ions; 3) molecular sucrose, C12H22O11 (s) ---> C12H22O11(aq) => 1 molecule; 4) ionic phosphate, Na3PO4 --> 3Na(+) + PO4 (3-) => 4 ions; 5) ionic magnesium bromide, MgBr2 --> Mg(2+) + 2 Br(-) => 3 ions. <span>So, ionic phosphate produces the greatest number of particles and it will cause the greatest increase of the boiling point.</span><span />
Answer:
hot, less, rise, top, cold, closer, more, sink
Explanation:
I'm in high-school done this long time ago
Answer:
FeCl₃
Explanation:
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7moles 9moles
A simple way to determine which reagent is the limiting reactant is to convert all given data to moles then divide by the respective coefficients of the balanced equation. The smaller value will be the limiting reactant.
4FeCl₃ + 3O₂ => 2Fe₂O₃+ 6Cl₂
Given => 7/4 = 1.75* 9/3 = 3
*Smaller value => FeCl₃ is limiting reactant.
NOTE: However, when working problems, one must use original mole values given.