Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J
Answer:
<u>The</u><u> </u><u>best</u><u> </u><u>thermal</u><u> </u><u>insulators</u><u> </u><u>have</u><u> </u><u>free</u><u> </u><u>electrons</u>
Answer:
option (d)
Explanation:
The relation between the rms velocity and the molecular mass is given by
v proportional to \frac{1}{\sqrt{M}} keeping the temperature constant
So for two gases




Answer:
2.5 ohm
Explanation:
R' and R''' are parallel
So,
1/R1= 1/R' + 1/R'''
1/R1 = 1/2 + 1/2
1/R1 = 1
so,
R1= 1 ohm
Now R1 and R'' are in series
so,
R= R1 + R''
R= 1 + 1.5
R= 2.5 ohm
<span>The correct option is C. Gravity, and the complete sentence is: "The force of gravity is the force at which the Earth attracts another object towards itself". In fact, the force of gravity between two objects is given by
</span>

<span>
where G is the gravitational constant, m1 and m2 the masses of the two objects, r their separation. If we take the Earth as one of the two objects, then m1 represents the Earth's mass, m2 the mass of the object and r the distance between the center of Earth and the object, and F is the gravitational force at which the Earth attracts the object.</span>