force times gravity (FG) =mass times gravity (mg)
Through Shannon's Theorem, we can calculate the capacity of the communications channel using the value of its bandwidth and signal-to-noise ratio. The capacity, C, can be expressed as
C = B × log₂(1 + S/N)
where B is the bandwidth of the channel and S/N is its signal-to-noise ratio.
Since the given SN ratio is in decibels, we must first express it as a ratio with no units as
SN (in decibels) = 10 × log (S/N)
30 = 10log(S/N)
log(S/N) = 3
S/N = 10³ = 1000
Now that we have S/N, we can solve for its capacity (in bits per second) as
C = 4000 × log₂(1 + 1000)
C = 39868.91 bps
Thus, the maximum capacity of the channel is 39868 bps or 40 kbps.
Answer: 40 kbps
Answer:
The elastic potential energy of the spring change during this process is 21.6 J.
Explanation:
Given that,
Spring constant of the spring, 
It extends 6 cm away from its equilibrium position.
We need to find the elastic potential energy of the spring change during this process. The elastic potential energy of the spring is given by the formula as follows :

So, the elastic potential energy of the spring change during this process is 21.6 J.
Answer:
The second type of body wave is the S wave or secondary wave, which is the second wave you feel in an earthquake. An S wave is slower than a P wave and can only move through solid rock, not through any liquid medium.
Answer:
To prevent from getting injured.