Answer:
Upper cuticle and guard cells
<span>The best choice is hypochlorous acid nitrous acid (HNO2) because it has the nearest value of pK to the desired pH.
pKa of </span>nitrous acid<span> is 3.34
If we know pKa and pH values, we can calculate the required ratio of conjugate base (NO2⁻) to acid (HNO2) from the following equation:
pH=pKa + log(conc. of base)/( conc. of acid)
</span><span>3.19=3.34 + log c(NO2⁻)/c(HNO2)
</span><span>3.19 - 3.34 = log c(NO2⁻)/c(HNO2)
-0.15 = log c(NO2⁻)/c(HNO2)
c(NO2⁻)/c(HNO2) = 10⁰¹⁵ = 1.41
</span>
Answer : The correct option is, 
Explanation :
Amino acid : The acid that contains two functional groups that are carboxylic group,
and ammine group,
.
When the two or more that two amino acids join together with the help of peptide bond, they produces polypeptide chain or protein.
The bond present between the two amino acid is called a peptide bond.
The peptide bond is a chemical bond that is formed between the two molecules when the nitrogen of one amino acid react with the carbon of another amino acid by releasing a water molecule. This is a dehydration synthesis or condensation reaction.
From this we conclude that, only two functional groups carboxylic group,
and ammine group,
are present in all amino acids.
Hence, the correct option is, 
The concentration of ClO₂⁻ at equilibrium if the initial concentration of HClO₂ is 0.0654.
<h3>What is concentration?</h3>
The concentration of any substance is the quantity of that substance in per square of the space or container.
The reaction is
HClO₂ + H₂O <=> H₃O⁺ + ClO₂⁻
The pH is 0.454 M
Ka = [H₃O⁺][ClO₂⁻ ] / [HClO₂]
2. 25 × 10⁻² m = [x][x] / 0.454-x]
2 + 0.011 - 0.004994 = 0
solve the quadratic equation
x = 0.0654 = [H3O+] = [ClO2-]
pH = -log (H3O+)
pH = -log(0.0654)
pH = 1.2
equilibrium concentrations of
[HClO2] = 0.454 -x = 0.454 -0.0654 = 0.3886 M
[ClO2- ] = x = 0.0654
Thus, the equilibrium concentrations is 0.0654.
To learn more about concentration, refer to the link:
brainly.com/question/16645766
#SPJ4
Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂