True
It is True I took the test
Answer:
Explanation:
The frequency is 16.0 Hz. That means that 16 of these waves can pass a single point in 1 second. We are given frequency and wavelength. The equation that relates them is
where f is frequency, v is velocity, and λ is wavelength. Putting all this together:
and solving for velocity,
v = 16.0(97.5) so
v = 1560 m/s. This wave can travel 1560 meters in a single second!!! Now that we know this velocity, we can use it in a proportion to find our unknown, which is how long, t, it will take to hear this sound 11000m away. (11 km is 11000m):
and cross multiply to get
1560t = 11000 so
t = 7.1 seconds
Answer:
a) 6.4 kJ
b) 43.4 kJ
Explanation:
a)
= Heat absorbed = 37 kJ
= Coefficient of performance = 5.8
= Work done
Heat absorbed is given as
=
37 = (5.8)
= 6.4 kJ
b)
= work per cycle required
=
+
= 37 + 6.4
= 43.4 kJ
Answer: - 452.088joule
Explanation:
Given the following :
Mass of water = 12g
Change in temperature(Dt) = (11 - 20)°C = - 9°C
Specific heats capacity of water(c) = 4.186j/g°C
Q = mcDt
Where Q = quantity of heat
Q = 12g × 4.186j/g°C × - 9°C
Q = - 452.088joule
Explanation:
Given the conditions A,B and C when the pendulum is released, at point A the initial velocity of the pendulum is zero(0), the potential energy stored is maximum(P.E= max),
the conditions can be summarized bellow
point A
initial velocity= 0
final velocity=0
P.E= Max
K.E= 0
point B
initial velocity= maximum
final velocity=maximum
P.E=K.E
point C
initial velocity= min
final velocity=min
P.E= 0
K.E= max