Answer:
I believe Na
Explanation:
Copper, because it is the only metal out of all of them.
Therefore copper is the only element that can loose electrons to have a positive charge, it is the most likely to become a cation.
Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>
The reaction occurs in a similar way as magnesium does, but much less vigorous. Strong heating is required to make iron powder burn in oxygen. The reaction gives out a yellow showery sparks and produces a black solid. iron reacts with dilute hydrocloric acid to give iron chloride and hydrogen gas.
Answer:

Explanation:
From the question, we have been asked to find the molarity of FeCl2 having a volume of 450 mL,
We have been provided with 225 g which is proportional to 1.8 moles.
We know that molarity of any solution should be in mol/L.
1 mole contained in 1 L means it has a molarity of 1 mol/L
Let's convert 450 mL to Litres which is,

= 0.450 L
Thus,
1 mole is contained in 1L
x moles are contained in 0.450 L
Hence,
x mole/molarity = {1 mole x 1 L}/{0.450 L}
= 4 mol/L
Therefore 4 mol/L is the molar concentration.