Answer:
32.7 kilograms of aluminium oxide will be produced.
Explanation:

Mass of aluminum = 17.3 kg = 17300 g (1 kg = 1000 g )
Moles of aluminium = 
According to reaction, 2 moles of aluminum gives 1 mole of aluminum oxide,then 640.74 moles of aluminum will give:
of aluminum oxide
Mass of 320.37 moles of aluminum oxides:
320.37 mol × 102 g/mol = 32,677.74 g = 32.67774 kg ≈ 32.7 kg
32.7 kilograms of aluminium oxide will be produced.
Answer:
4 moles of H₃PO₄
Explanation:
The reaction expression is given as;
3KOH + H₃PO₄ → K₃PO₄ + 3H₂O
Number of moles of water = 12moles
Unknown:
Number of moles of H₃PO₄ = ?
Solution:
From the balanced reaction expression we see that;
3 moles of water is produced from 1 mole of H₃PO₄
So; 12 moles of water would be produced from
= 4 moles of H₃PO₄
Answer:
1) 0.0025 mol/L.s.
2) 0.0025 mol/L.s.
Explanation:
<em>H₂ + Cl₂ → 2HCl.</em>
<em></em>
<em>The average reaction rate = - Δ[H₂]/Δt = - Δ[Cl₂]/Δt = 1/2 Δ[HCl]/Δt</em>
<em></em>
<em>1. Calculate the average reaction rate expressed in moles H₂ consumed per liter per second.</em>
<em></em>
The average reaction rate expressed in moles H₂ consumed per liter per second = - Δ[H₂]/Δt = - (0.02 M - 0.03 M)/(4.0 s) = 0.0025 mol/L.s.
<em>2. Calculate the average reaction rate expressed in moles CI₂ consumed per liter per second.</em>
<em></em>
The average reaction rate expressed in moles Cl₂ consumed per liter per second = - Δ[Cl₂]/Δt = - (0.04 M - 0.05 M)/(4.0 s) = 0.0025 mol/L.s.
Explanation:
attribute of a person that often cannot be measured directly but can be assessed using numbers of indicators or manifest variables
Answer:
PART A: The LDF occurs between all molecules. Dispersion forces result from shifting electron clouds, which cause weak, temporary dipole.
PART B: Dipole dipole operates only between polar molecules. This is when two polar molecules get near each other and the positively charged portion of the molecule is attracted to the negatively charged portion of another molecule.
PART C: Dipole dipole and in some cases hydrogen bonding operate between the hydrogen atom of a polar bond and a nearby small electronegative atom. Only if the atom bonded to it were F, O or N it would be hydrogen bonding. Otherwise it is dipole dipole.