Answer:When heat is added to a substance, the molecules and atoms vibrate faster. As atoms vibrate faster, the space between atoms increases. The motion and spacing of the particles determines the state of matter of the substance. ... They contract when they lose their heat.
Explanation:Google
Explanation:
The solution of the lactic acd and sodium lactate is referred to as a buffer solution.
A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. In this case, the weak acid is the lactic acid and the conjugate base is the sodium lactate.
Buffer solutions are generally known to resist change in pH values.
When a strong base (in this case, NaOH) is added to the buffer, the lactic acid will give up its H+ in order to transform the base (OH-) into water (H2O) and the conjugate base, so we have:
HA + OH- → A- + H2O.
Since the added OH- is consumed by this reaction, the pH will change only slightly.
The NaOH reacts with the weak acid present in the buffer sollution.
Answer: Yes
Explanation: It can because snow is wet and anything that is wet can
Make a ratio of the number of moles and do the calculations. Do you get it?
Answer:
Explanation:
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
Law of multiple proportion:
When two elements combine to form two or more compounds with different proportions, the weight of on element that combine with other elements in fixed proportion is in the ratio of small whole number.
For example:
Consider the example of carbon dioxide and carbon monoxide.
CO and CO₂
we are given with 1 g carbon on both case while 1.3 g oxygen for carbon monoxide and 2.6 for carbon dioxide. It means the ratio of oxygen is 1:2.
There is 1.3 g of oxygen in carbon monoxide for one g of carbon while in case of carbon dioxide there is 2.6 g of oxygen for one gram of carbon.