Answer:
Carbon dioxide
Explanation:
Neither helium nor carbon dioxide has a molecular dipole, so their strongest van der Waals attractive forces are London forces.
Helium is a small spherical atom with only a two electrons, so its atoms have quite weak attractions to each other.
CO₂ is a large linear molecule. It has more electrons than helium, so the attractive forces are greater. Furthermore, the molecules can align themselves compactly side-by-side and maximize the attractions (see below).
For example. CO₂ becomes a solid at -78 °C, but helium must be cooled to -272 °C to make it freeze (that's just 1 °C above absolute zero).
Answer: Yes
Explanation: Plasmids offer a number of unique characteristics that make genetic engineering much more efficient. Plasmids are a type of non-chromosomal DNA. Integrating DNA into a bacterial or other chromosome is far more complex than simply putting DNA into a cell; plasmids make it easier to transport DNA into a cell by eliminating this step.
They would most likely get sick. Or suffer from organ failure. When one part of your body doesn’t work it causes a weakness, making you more susceptible to sicknesses.