The height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
<h3>Pressure and temperature at equilibrium </h3>
The relationship between pressure and temperature can be used to determine the height risen by the water.

where;
- V₁ = AL
- V₂ = A(L - y)
- P₁ = Pa
- P₂ = Pa + ρgh
- T₁ = 20⁰C = 293 K
- T₂ = 10⁰ C = 283 k

Thus, the height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
The complete question is below:
A diving bell is a 4.2 m -tall cylinder closed at the upper end but open at the lower end. The temperature of the air in the bell is 20 °C. The bell is lowered into the ocean until its lower end is 100 m deep. The temperature at that depth is 10°C. How high does the water rise in the bell after enough time has passed for the air to reach thermal equilibrium?
Learn more about thermal equilibrium here: brainly.com/question/9459470
#SPJ4
Answer:
C
Explanation:
A Tsunami is usually the result of an earthquake under the sea
Answer:
a. -6.17 rad
Explanation:
60 seconds is 2π radians. Writing a proportion:
2π / 60 = x / 59
x = 6.17
The displacement is negative because the second hand moves clockwise.
Answer:
7.5
Explanation:
The dielectric constant of ceramics is about 7.5.
The dielectric constant of a substance is the ratio of the electric permeability of a substance to the electric permeability of free space.
Dielectric constant gives a good overview about the ability of substance to store charges compared to another.
Most substances have their electric constant and they suggest the ease by which they can store electrical energy. This is very important in developing capacitors.