For a certain interval of time, an object is acted on by a constant non-zero force. For this interval of time . . . . .
A. The object is at rest. No. From F=ma, if F is not zero, the object can't remain at rest.
<em>B.</em> <em>The object's velocity changes.</em> <em>Yes.</em> From F=ma, if F is not zero, there must be acceleration.
C. The object's velocity can only increase. No. It might decrease.
D. The object is moving with constant velocity. No. From F=ma, if F is not zero, there must be acceleration.
<em>E.</em> <em>The object is accelerating.</em> <em>Yes.</em> From F=ma, if F is not zero, there must be acceleration.
Answer:
The answers to your questions are given below
Explanation:
22. The energy of an electromagnetic wave and it's frequency are related by the following equation:
E = hf
Where:
E => is the energy
h => is the Planck's constant
f => is the frequency
From the equation i.e E = hf, we can conclude that the energy of a wave is directly proportional to it's frequency. This implies that an increase in the frequency of the wave will lead to an increase in the energy of the wave and also, a decrease in the frequency will lead to a decrease in the energy of the wave.
23. Gamma ray and radio wave are both electromagnetic waves. All electromagnetic waves has a constant speed of 3×10⁸ m/s in space.
Thus, gamma ray and radio wave have the same speed in space.
No it not because
Jill didn’t have actually have the gun